[1] GAO Y, GONG S Y, CHEN B X, et al. Progress in metal-organic framework catalysts for selective catalytic reduction of NO x: A mini-review[J]. Atmosphere, 2022, 13(5): 793. doi: 10.3390/atmos13050793
[2] PAOLUCCI C, KHURANA I, PAREKH A A, et al. Dynamic multinuclear sites formed by mobilized copper ions in NO x selective catalytic reduction[J]. Science, 2017, 357(6354): 898-903. doi: 10.1126/science.aan5630
[3] DENG J J, WANG X C, WEI Z L, et al. A review of NO x and SO x emission reduction technologies for marine diesel engines and the potential evaluation of liquefied natural gas fuelled vessels[J]. Science of the Total Environment, 2021, 766: 144319. doi: 10.1016/j.scitotenv.2020.144319
[4] CHEN R, ZHANG T S, GUO Y Q, et al. Recent advances in simultaneous removal of SO2 and NO x from exhaust gases: Removal process, mechanism and kinetics[J]. Chemical Engineering Journal, 2021, 420: 127588. doi: 10.1016/j.cej.2020.127588
[5] ZHANG W B, CHEN J L, GUO L, et al. Research progress on NH3-SCR mechanism of metal-supported zeolite catalysts[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1294-1315. doi: 10.1016/S1872-5813(21)60080-4
[6] MARTINEZ STAGNARO S Y, RUEDA M L, VOLZONE C, et al. Structural modification of a lamellar solid by thermal treatment. Effect on the Cd and Pb adsorptions from aqueous solution[J]. Procedia Materials Science, 2012, 1: 180-184. doi: 10.1016/j.mspro.2012.06.024
[7] CHENG J, YE Q, ZHENG C K, et al. Effect of ceria loading on Zr-pillared clay catalysts for selective catalytic reduction of NO with NH3[J]. New Journal of Chemistry, 2019, 43(27): 10850-10858. doi: 10.1039/C9NJ02102G
[8] CHENG J, SONG Y, YE Q, et al. A mechanistic investigation on the selective catalytic reduction of NO with ammonia over the V-Ce/Ti-PILC catalysts[J]. Molecular Catalysis, 2018, 445: 111-123. doi: 10.1016/j.mcat.2017.11.019
[9] WANG X P, YE Q, LIU W Y, et al. Enhanced resistance to Pb poisoning of the Co-modified Mn/Fe-pillared clay catalysts for NH3-SCR at low temperatures[J]. ChemistrySelect, 2023, 8(10): e202204336. doi: 10.1002/slct.202204336
[10] CHENG J, YE Q, LI C X, et al. Ceria-modified Al-Mn-pillared clay catalysts for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(3): e2439. doi: 10.1002/apj.2439
[11] KASHIF M, YUAN M H, SU Y X, et al. A review on pillared clay-based catalysts for low-temperature selective catalytic reduction of NO x with hydrocarbons[J]. Applied Clay Science, 2023, 233: 106847. doi: 10.1016/j.clay.2023.106847
[12] 杨祥瑾, 张先龙, 王新宇, 等. 造孔剂对低温锰基多孔陶瓷NH3-SCR催化剂性能的影响[J]. 环境化学, 2023, 42(2): 597-607. doi: 10.7524/j.issn.0254-6108.2021101102 YANG X J, ZHANG X L, WANG X Y, et al. Effect of pore-forming agent on properties of NH3-SCR catalyst for low temperature manganese-based porous ceramics[J]. Environmental Chemistry, 2023, 42(2): 597-607 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021101102
[13] LONG R Q, YANG R T. FTIR and kinetic studies of the mechanism of Fe3+-exchanged TiO2-pillared clay catalyst for selective catalytic reduction of NO with ammonia[J]. Journal of Catalysis, 2000, 190(1): 22-31. doi: 10.1006/jcat.1999.2737
[14] KANG K K, YAO X J, HUANG Y K, et al. Insights into the co-doping effect of Fe3+ and Zr4+ on the anti-K performance of CeTiO x catalyst for NH3-SCR reaction[J]. Journal of Hazardous Materials, 2021, 416: 125821. doi: 10.1016/j.jhazmat.2021.125821
[15] ZHU L, ZHONG Z P, YANG H, et al. Comparison study of Cu-Fe-Ti and Co-Fe-Ti oxide catalysts for selective catalytic reduction of NO with NH3 at low temperature[J]. Journal of Colloid and Interface Science, 2016, 478: 11-21. doi: 10.1016/j.jcis.2016.05.052
[16] VIKULOV K A, ANDREINI A, POELS E K, et al. Selective catalytic reduction of NO with NH3 over Nb2O5-promoted V2O5/TiO2 catalysts[J]. Catalysis Letters, 1994, 25(1): 49-54.
[17] ZHANG G Q, YAN Z Y. Three-component nonlinear Schrödinger equations: Modulational instability, Nth-order vector rational and semi-rational rogue waves, and dynamics[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 62: 117-133. doi: 10.1016/j.cnsns.2018.02.008
[18] WANG X X, SHI Y, LI S J, et al. Promotional synergistic effect of Cu and Nb doping on a novel Cu/Ti-Nb ternary oxide catalyst for the selective catalytic reduction of NO x with NH3[J]. Applied Catalysis B: Environmental, 2018, 220: 234-250. doi: 10.1016/j.apcatb.2017.08.021
[19] WANG X Q, LIU Y, YING Q J, et al. The superior performance of Nb-modified Cu-Ce-Ti mixed oxides for the selective catalytic reduction of NO with NH3 at low temperature[J]. Applied Catalysis A: General, 2018, 562: 19-27. doi: 10.1016/j.apcata.2018.05.011
[20] XU G Y, GUO X L, CHENG X X, et al. A review of Mn-based catalysts for low-temperature NH3-SCR: NO x removal and H2O/SO2 resistance[J]. Nanoscale, 2021, 13(15): 7052-7080. doi: 10.1039/D1NR00248A
[21] GAO X, JIANG Y, ZHONG Y, et al. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 734-739.
[22] SUN P, GUO R T, LIU S M, et al. The enhanced performance of MnO x catalyst for NH3-SCR reaction by the modification with Eu[J]. Applied Catalysis A: General, 2017, 531: 129-138. doi: 10.1016/j.apcata.2016.10.027
[23] HUANG C Y, GUO R T, PAN W G, et al. Eu-doped TiO2 nanoparticles with enhanced activity for CO2 phpotcatalytic reduction[J]. Journal of CO2 Utilization, 2018, 26: 487-495. doi: 10.1016/j.jcou.2018.06.004
[24] YUAN M H, DENG W Y, DONG S L, et al. Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene[J]. Chemical Engineering Journal, 2018, 353: 839-848. doi: 10.1016/j.cej.2018.07.201
[25] KWAK J H, TONKYN R G, KIM D H, et al. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO x with NH3[J]. Journal of Catalysis, 2010, 275(2): 187-190. doi: 10.1016/j.jcat.2010.07.031
[26] HAO Y H, WANG Y, ZHANG T T, et al. Cu docking-activated Nb incorporation in multivariate CuO-Nb2O5/CeO2 catalysts for selective reduction of NO x with NH3[J]. Applied Catalysis B: Environmental, 2024, 340: 123254. doi: 10.1016/j.apcatb.2023.123254
[27] ETTIREDDY P R, ETTIREDDY N, BONINGARI T, et al. Investigation of the selective catalytic reduction of nitric oxide with ammonia over Mn/TiO2 catalysts through transient isotopic labeling and in situ FT-IR studies[J]. Journal of Catalysis, 2012, 292: 53-63. doi: 10.1016/j.jcat.2012.04.019
[28] ZHANG S C, WEN Z Y, YANG L, et al. Controllable synthesis of hierarchical porous petal-shaped SAPO-34 zeolite with excellent DTO =performance[J]. Microporous and Mesoporous Materials, 2019, 274: 220-226. doi: 10.1016/j.micromeso.2018.08.001
[29] ESPOSITO S, TURCO M, BAGNASCO G, et al. Highly dispersed sol–gel synthesized Cu–ZrO2 materials as catalysts for oxidative steam reforming of methanol[J]. Applied Catalysis A: General, 2010, 372(1): 48-57. doi: 10.1016/j.apcata.2009.10.006
[30] ALI S, CHEN L Q, LI Z B, et al. Cu x-Nb1.1- x (x = 0.45, 0.35, 0.25, 0.15) bimetal oxides catalysts for the low temperature selective catalytic reduction of NO with NH3[J]. Applied Catalysis B: Environmental, 2018, 236: 25-35. doi: 10.1016/j.apcatb.2018.05.014
[31] SU Y X, WEN N N, CHENG J H, et al. Experimental study on SCR-C3H6 over Cu-Fe/Al-PILC catalysts: catalytic performance, characterization, and mechanism[J]. Industrial & Engineering Chemistry Research, 2020, 59(33): 14776-14788.
[32] KIM Y J, LEE J K, MIN K M, et al. Hydrothermal stability of CuSSZ13 for reducing NO x by NH3[J]. Journal of Catalysis, 2014, 311: 447-457. doi: 10.1016/j.jcat.2013.12.012
[33] WANG L, LI W, QI G, et al. Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3[J]. Journal of Catalysis, 2012, 289: 21-29. doi: 10.1016/j.jcat.2012.01.012
[34] FEDEYKO J M, CHEN B, CHEN H Y. Mechanistic study of the low temperature activity of transition metal exchanged zeolite SCR catalysts[J]. Catalysis Today, 2010, 151(3/4): 231-236.
[35] WANG B, DONG H S, LIU Y Z, et al. Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits[J]. Applied Energy, 2018, 227: 710-718. doi: 10.1016/j.apenergy.2017.08.005
[36] ZHANG D, YANG R T. NH3-SCR of NO over one-pot Cu-SAPO-34 catalyst: Performance enhancement by doping Fe and MnCe and insight into N2O formation[J]. Applied Catalysis A: General, 2017, 543: 247-256. doi: 10.1016/j.apcata.2017.06.021
[37] XU H D, WANG Y, CAO Y, et al. Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NO x with NH3[J]. Chemical Engineering Journal, 2014, 240: 62-73. doi: 10.1016/j.cej.2013.11.053
[38] YANG N Z, GUO R T, PAN W G, et al. The deactivation mechanism of Cl on Ce/TiO2 catalyst for selective catalytic reduction of NO with NH3[J]. Applied Surface Science, 2016, 378: 513-518. doi: 10.1016/j.apsusc.2016.03.211
[39] LIU Y Z, XU Q Y, GUO R T, et al. Enhancement of the activity of Cu/TiO2 catalyst by Eu modification for selective catalytic reduction of NO x with NH3[J]. Environmental Science and Pollution Research, 2020, 27(22): 27663-27673. doi: 10.1007/s11356-020-09101-8
[40] JANSSENS T V W, FALSIG H, LUNDEGAARD L F, et al. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia[J]. ACS Catalysis, 2015, 5(5): 2832-2845. doi: 10.1021/cs501673g
[41] BIN F, SONG C L, LV G, et al. Selective catalytic reduction of nitric oxide with ammonia over zirconium-doped copper/ZSM-5 catalysts[J]. Applied Catalysis B: Environmental, 2014, 150/151: 532-543. doi: 10.1016/j.apcatb.2013.12.052
[42] 刘晗, 周媛媛, 邓琳, 等. 过渡金属掺杂MnO x/ZSM-5对甲苯吸附和催化氧化的影响[J]. 环境化学, 2023, 42(4): 1209-1221. doi: 10.7524/j.issn.0254-6108.2021110903 LIU H, ZHOU Y Y, DENG L, et al. Effect of transition metal oxide doping MnO x/ZSM-5 on the adsorption and catalytic oxidation of toluene[J]. Environmental Chemistry, 2023, 42(4): 1209-1221 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021110903
[43] XIONG S C, PENG Y, WANG D, et al. The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: Improvement of low-temperature activity and sulfur resistance[J]. Chemical Engineering Journal, 2020, 387: 124090. doi: 10.1016/j.cej.2020.124090
[44] WANG Z Y, GUO R T, SHI X, et al. The enhanced performance of Sb-modified Cu/TiO2 catalyst for selective catalytic reduction of NO x with NH3[J]. Applied Surface Science, 2019, 475: 334-341. doi: 10.1016/j.apsusc.2018.12.281
[45] GUO R T, SUN X, LIU J, et al. Enhancement of the NH3-SCR catalytic activity of MnTiO x catalyst by the introduction of Sb[J]. Applied Catalysis A: General, 2018, 558: 1-8. doi: 10.1016/j.apcata.2018.03.028
[46] GUO R T, SUN P, PAN W G, et al. A highly effective MnNdO x catalyst for the selective catalytic reduction of NO x with NH3[J]. Industrial & Engineering Chemistry Research, 2017, 56(44): 12566-12577.
[47] KRISHNA K, SEIJGER G B F, van den BLEEK C M, et al. Very active CeO2-zeolite catalysts for NO x reduction with NH3[J]. Chemical Communications, 2002(18): 2030-2031. doi: 10.1039/b205294f
[48] LIU F D, HE H, DING Y, et al. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Applied Catalysis B: Environmental, 2009, 93(1/2): 194-204.
[49] MA Z R, WU X D, SI Z C, et al. Impacts of niobia loading on active sites and surface acidity in NbO x/CeO2–ZrO2 NH3–SCR catalysts[J]. Applied Catalysis B: Environmental, 2015, 179: 380-394. doi: 10.1016/j.apcatb.2015.05.038
[50] ZAWADZKI J, WIŚNIEWSKI M. In situ characterization of interaction of ammonia with carbon surface in oxygen atmosphere[J]. Carbon, 2003, 41(12): 2257-2267. doi: 10.1016/S0008-6223(03)00251-3
[51] LARRUBIA M A, RAMIS G, BUSCA G. An FT-IR study of the adsorption of urea and ammonia over V2O5–MoO3–TiO2 SCR catalysts[J]. Applied Catalysis B: Environmental, 2000, 27(3): L145-L151. doi: 10.1016/S0926-3373(00)00150-8
[52] YEOM Y H, WEN B, SACHTLER W M H, et al. NO x reduction from diesel emissions over a nontransition metal zeolite catalyst: A mechanistic study using FTIR spectroscopy[J]. The Journal of Physical Chemistry B, 2004, 108(17): 5386-5404. doi: 10.1021/jp037504e
[53] BRANDENBERGER S, KRÖCHER O, WOKAUN A, et al. The role of Brønsted acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5[J]. Journal of Catalysis, 2009, 268(2): 297-306. doi: 10.1016/j.jcat.2009.09.028
[54] LIU Y, GU T T, WENG X L, et al. DRIFT studies on the selectivity promotion mechanism of Ca-modified Ce-Mn/TiO2 catalysts for low-temperature NO reduction with NH3[J]. The Journal of Physical Chemistry C, 2012, 116(31): 16582-16592. doi: 10.1021/jp304390e
[55] WU Z B, JIANG B Q, LIU Y, et al. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environmental Science & Technology, 2007, 41(16): 5812-5817.