[1] |
闫凤越, 李伟芳, 王亘, 等. 天津市工业区氨污染特征及感官特性评价[J]. 环境化学, 2019, 38(11): 2505-2509. doi: 10.7524/j.issn.0254-6108.2019031401
YAN F Y, LI W F, WANG G, et al. Study on pollution characteristics and sensory of NH3 in dustrial site of Tianjin City[J]. Environmental Chemistry, 2019, 38(11): 2505-2509 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019031401
|
[2] |
陈沛坤, 张袁斌, 崔希利, 等. 氨气深度脱除材料与技术研究进展[J]. 化工进展, 2021, 40(7): 3957-3975.
CHEN P K, ZHANG Y B, CUI X L, et al. Progress in materials and technologies for deep removal of ammonia gas[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3957-3975 (in Chinese).
|
[3] |
CHEN S H, CHENG M M, GUO Z, et al. Enhanced atmospheric ammonia (NH3) pollution in China from 2008 to 2016: Evidence from a combination of observations and emissions[J]. Environmental Pollution, 2020, 263: 114421. doi: 10.1016/j.envpol.2020.114421
|
[4] |
FU X, WANG S X, XING J, et al. Increasing ammonia concentrations reduce the effectiveness of particle pollution control achieved via SO2 and NO x emissions reduction in East China[J]. Environmental Science & Technology Letters, 2017, 4(6): 221-227.
|
[5] |
KONG L, TANG X, ZHU J, et al. Improved inversion of monthly ammonia emissions in China based on the Chinese ammonia monitoring network and ensemble Kalman filter[J]. Environmental Science & Technology, 2019, 53(21): 12529-12538.
|
[6] |
CHANG Y H, ZOU Z, ZHANG Y L, et al. Assessing contributions of agricultural and nonagricultural emissions to atmospheric ammonia in a Chinese megacity[J]. Environmental Science & Technology, 2019, 53(4): 1822-1833.
|
[7] |
张小艺, 林伟立, 马志强, 等. 室内氨气浓度变化特征及其环境意义[J]. 环境化学, 2021, 40(10): 3270-3278. doi: 10.7524/j.issn.0254-6108.2020060501
ZHANG X Y, LIN W L, MA Z Q, et al. Variations in indoor ammonia concentration and its environmental significance[J]. Environmental Chemistry, 2021, 40(10): 3270-3278 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020060501
|
[8] |
谭静瑶, 王丽涛, 刘振通, 等. 邯郸市NH3污染特征及其在PM2.5形成中的作用[J]. 环境化学, 2021, 40(7): 2035-2046. doi: 10.7524/j.issn.0254-6108.2020120302
TAN J Y, WANG L T, LIU Z T, et al. NH3 pollution and its role in PM2.5 pollution in Handan, China[J]. Environmental Chemistry, 2021, 40(7): 2035-2046 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020120302
|
[9] |
WU L B, REN H, WANG P, et al. Aerosol ammonium in the urban boundary layer in Beijing: Insights from nitrogen isotope ratios and simulations in summer 2015[J]. Environmental Science & Technology Letters, 2019, 6(7): 389-395.
|
[10] |
HUANG R J, ZHANG Y L, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514: 218-222. doi: 10.1038/nature13774
|
[11] |
张长斌. 室内空气污染物催化氧化研究[J]. 环境化学, 2015, 34(5): 817-823. doi: 10.7524/j.issn.0254-6108.2015.05.2015010509
ZHANG C B. Study of catalytic oxidation of indoor air pollutants[J]. Environmental Chemistry, 2015, 34(5): 817-823 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.05.2015010509
|
[12] |
BERHE GEBREEGZIABHER T, WANG S, NAM H. Adsorption of H2S, NH3 and TMA from indoor air using porous corncob activated carbon: Isotherm and kinetics study[J]. Journal of Environmental Chemical Engineering, 2019, 7(4): 103234. doi: 10.1016/j.jece.2019.103234
|
[13] |
VIKRANT K, KIM K H, DONG F, et al. Photocatalytic platforms for removal of ammonia from gaseous and aqueous matrixes: Status and challenges[J]. ACS Catalysis, 2020, 10(15): 8683-8716. doi: 10.1021/acscatal.0c02163
|
[14] |
DAVID A, PANCHARATNA K. Effects of acetaminophen (paracetamol) in the embryonic development of zebrafish, Danio rerio[J]. Journal of Applied Toxicology: JAT, 2009, 29(7): 597-602. doi: 10.1002/jat.1446
|
[15] |
KATZ M J, HOWARTH A J, MOGHADAM P Z, et al. High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27[J]. Dalton Transactions, 2016, 45(10): 4150-4153. doi: 10.1039/C5DT03436A
|
[16] |
赵晨阳, 李洪枚, 魏源送, 等. 翻堆频率对猪粪条垛堆肥过程温室气体和氨气排放的影响[J]. 环境科学, 2014, 35(2): 533-540.
ZHAO C Y, LI H M, WEI Y S, et al. Effects of turning frequency on emission of greenhouse gas and ammonia during swine manure windrow composting[J]. Environmental Science, 2014, 35(2): 533-540 (in Chinese).
|
[17] |
BEHERA S N, SHARMA M, ANEJA V P, et al. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies[J]. Environmental Science and Pollution Research, 2013, 20(11): 8092-8131. doi: 10.1007/s11356-013-2051-9
|
[18] |
SAARELA K, JÄRNSTRÖM H. Indoor air quality in new residential buildings and behaviour of materials in structures[J]. Indoor and Built Environment, 2003, 12(4): 243-247. doi: 10.1177/1420326X03035096
|
[19] |
LI M Z, WESCHLER C J, BEKÖ G, et al. Human ammonia emission rates under various indoor environmental conditions[J]. Environmental Science & Technology, 2020, 54(9): 5419-5428.
|
[20] |
GAO F Y, LIU Y Y, SANI Z, et al. Advances in selective catalytic oxidation of ammonia (NH3-SCO) to dinitrogen in excess oxygen: A review on typical catalysts, catalytic performances and reaction mechanisms[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104575. doi: 10.1016/j.jece.2020.104575
|
[21] |
CHMIELARZ L, JABŁOŃSKA M. Advances in selective catalytic oxidation of ammonia to dinitrogen: A review[J]. RSC Advances, 2015, 5(54): 43408-43431. doi: 10.1039/C5RA03218K
|
[22] |
HAN B, BUTTERLY C, ZHANG W, et al. Adsorbent materials for ammonium and ammonia removal: A review[J]. Journal of Cleaner Production, 2021, 283: 124611. doi: 10.1016/j.jclepro.2020.124611
|
[23] |
HUANG C C, LI H S, CHEN C H. Effect of surface acidic oxides of activated carbon on adsorption of ammonia[J]. Journal of Hazardous Materials, 2008, 159(2/3): 523-527.
|
[24] |
GONÇALVES M, SÁNCHEZ-GARCÍA L, de OLIVEIRA JARDIM E, et al. Ammonia removal using activated carbons: Effect of the surface chemistry in dry and moist conditions[J]. Environmental Science & Technology, 2011, 45(24): 10605-10610.
|
[25] |
CANALS-BATLLE C, ROS A, LILLO-RÓDENAS M A, et al. Carbonaceous adsorbents for NH3 removal at room temperature[J]. Carbon, 2008, 46(1): 176-178. doi: 10.1016/j.carbon.2007.10.017
|
[26] |
TAKAHASHI A, MINAMI K, NODA K, et al. Trace ammonia removal from air by selective adsorbents reusable with water[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15115-15119.
|
[27] |
REZAEI E, SCHLAGETER B, NEMATI M, et al. Evaluation of metal oxide nanoparticles for adsorption of gas phase ammonia[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 422-431. doi: 10.1016/j.jece.2016.12.026
|
[28] |
REZAEI E, AZAR R, NEMATI M, et al. Gas phase adsorption of ammonia using nano TiO2-activated carbon composites–Effect of TiO2 loading and composite characterization[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5902-5911. doi: 10.1016/j.jece.2017.11.010
|
[29] |
ZHENG W H, HU J T, RAPPEPORT S, et al. Activated carbon fiber composites for gas phase ammonia adsorption[J]. Microporous and Mesoporous Materials, 2016, 234: 146-154. doi: 10.1016/j.micromeso.2016.07.011
|
[30] |
ZHANG D L, SHEN Y J, DING J T, et al. A combined experimental and computational study on the adsorption sites of zinc-based MOFs for efficient ammonia capture[J]. Molecules, 2022, 27(17): 5615. doi: 10.3390/molecules27175615
|
[31] |
GRANT GLOVER T, PETERSON G W, SCHINDLER B J, et al. MOF-74 building unit has a direct impact on toxic gas adsorption[J]. Chemical Engineering Science, 2011, 66(2): 163-170. doi: 10.1016/j.ces.2010.10.002
|
[32] |
DEHMANI Y, DRIDI D, LAMHASNI T, et al. Review of phenol adsorption on transition metal oxides and other adsorbents[J]. Journal of Water Process Engineering, 2022, 49: 102965. doi: 10.1016/j.jwpe.2022.102965
|
[33] |
张传巧, 陈静, 吴秋月, 等. Ce-Mn复合氧化物对As(V)的吸附行为与机制[J]. 环境化学, 2020, 39(12): 3542-3551. doi: 10.7524/j.issn.0254-6108.2019090605
ZHANG C Q, CHEN J, WU Q Y, et al. Adsorption of As (V) on Ce-Mn binary oxide: Behavior and mechanism[J]. Environmental Chemistry, 2020, 39(12): 3542-3551 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019090605
|
[34] |
陈晨, 李北罡. Fe3O4@SA/Ce微球的表征及对染料的吸附特性[J]. 环境化学, 2021, 40(3): 799-807. doi: 10.7524/j.issn.0254-6108.2019102601
CHEN C, LI B G. Characterization of Fe3O4@SA/Ce microspheres and their adsorption characteristics for direct dyes[J]. Environmental Chemistry, 2021, 40(3): 799-807 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019102601
|
[35] |
ZHOU Y, WU Z, DING D N, et al. Tunnel structured manganese dioxides for the gaseous ammonia adsorption and its regeneration performance[J]. Separation and Purification Technology, 2022, 284: 120252. doi: 10.1016/j.seppur.2021.120252
|
[36] |
RONG S P, ZHANG P Y, LIU F, et al. Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde[J]. ACS Catalysis, 2018, 8(4): 3435-3446. doi: 10.1021/acscatal.8b00456
|
[37] |
XIAO W, XIA H, FUH J Y H, et al. Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties[J]. Journal of Power Sources, 2009, 193(2): 935-938. doi: 10.1016/j.jpowsour.2009.03.073
|
[38] |
HE T H, SHAO D D, ZENG X S, et al. Harvesting the vibration energy of α-MnO2 nanostructures for complete catalytic oxidation of carcinogenic airborne formaldehyde at ambient temperature[J]. Chemosphere, 2020, 261: 127778. doi: 10.1016/j.chemosphere.2020.127778
|
[39] |
TOMPSETT D A, PARKER S C, ISLAM M S. Surface properties of α-MnO2: Relevance to catalytic and supercapacitor behaviour[J]. Journal of Materials Chemistry A, 2014, 2(37): 15509-15518. doi: 10.1039/C4TA00952E
|
[40] |
HELMINEN J, HELENIUS J, PAATERO E, et al. Comparison of sorbents and isotherm models for NH3-gas separation by adsorption[J]. AIChE Journal, 2000, 46(8): 1541-1555. doi: 10.1002/aic.690460807
|
[41] |
王海林. 改性柚皮基生物炭对氨气的吸附性能及其机理研究[D].重庆: 重庆大学, 2021.
WANG H L. Adsorption performance of modified pomelo peel-based biochar for ammonia and its mechanism research[D]. Chongqing:Chongqing University, 2021 (in Chinese).
|
[42] |
HE W J, LU J L, ZHANG N, et al. Surface acidic sites strengthened core-shell HC@MnO2 for enhanced gaseous ammonia adsorption[J]. Chemosphere, 2023, 338: 139507. doi: 10.1016/j.chemosphere.2023.139507
|
[43] |
JIA J B, ZHANG P Y, CHEN L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures[J]. Applied Catalysis B: Environmental, 2016, 189: 210-218. doi: 10.1016/j.apcatb.2016.02.055
|
[44] |
LIU Y, YANG W J, ZHANG P Y, et al. Nitric acid-treated birnessite-type MnO2: An efficient and hydrophobic material for humid ozone decomposition[J]. Applied Surface Science, 2018, 442: 640-649. doi: 10.1016/j.apsusc.2018.02.204
|
[45] |
ZHOU Y, RONG S P, XIE H F, et al. Enhancement of acidic sites in layered MnO2 for the highly efficient selective catalytic oxidation of gaseous ammonia[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109480. doi: 10.1016/j.jece.2023.109480
|
[46] |
WANG F, DAI H X, DENG J G, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: Highly effective catalysts for the removal of toluene[J]. Environmental Science & Technology, 2012, 46(7): 4034-4041.
|
[47] |
YIN X L, HAN H M, GUNJI I, et al. NH3 adsorption on the Brönsted and Lewis acid sites of V2O5(010): A periodic density functional study[J]. The Journal of Physical Chemistry B, 1999, 103(22): 4701-4706. doi: 10.1021/jp990363p
|
[48] |
ZHANG N Q, LI L C, GUO Y Z, et al. A MnO2-based catalyst with H2O resistance for NH3-SCR: Study of catalytic activity and reactants-H2O competitive adsorption[J]. Applied Catalysis B: Environmental, 2020, 270: 118860. doi: 10.1016/j.apcatb.2020.118860
|
[49] |
MARTINS G V A, BERLIER G, BISIO C, et al. Quantification of Brønsted acid sites in microporous catalysts by a combined FTIR and NH3-TPD study[J]. The Journal of Physical Chemistry C, 2008, 112(18): 7193-7200. doi: 10.1021/jp710613q
|
[50] |
RONG S P, HE T H, ZHANG P Y. Self-assembly of MnO2 nanostructures into high purity three-dimensional framework for high efficiency formaldehyde mineralization[J]. Applied Catalysis B: Environmental, 2020, 267: 118375. doi: 10.1016/j.apcatb.2019.118375
|
[51] |
RONG S P, ZHANG P Y, YANG Y J, et al. MnO2 framework for instantaneous mineralization of carcinogenic airborne formaldehyde at room temperature[J]. ACS Catalysis, 2017, 7(2): 1057-1067. doi: 10.1021/acscatal.6b02833
|
[52] |
HUANG Z G, ZHU Z P, LIU Z Y, et al. Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures[J]. Journal of Catalysis, 2003, 214(2): 213-219. doi: 10.1016/S0021-9517(02)00157-4
|
[53] |
XIE L L, GAO Q M, WU C D, et al. Rapid hydrothermal synthesis of bimetal cobalt nickel phosphate molecular sieve CoVSB-1 and its ammonia gas adsorption property[J]. Microporous and Mesoporous Materials, 2005, 86(1/2/3): 323-328.
|
[54] |
PETIT C, MENDOZA B, BANDOSZ T J. Reactive adsorption of ammonia on Cu-based MOF/graphene composites[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(19): 15302-15309. doi: 10.1021/la1021092
|
[55] |
SI Z C, WENG D, WU X D, et al. Synergistic effects between copper and tungsten on the structural and acidic properties of CuO x/WO x–ZrO2 catalyst[J]. Catalysis Science & Technology, 2011, 1(3): 453-461.
|
[56] |
WANG F, HE G Z, ZHANG B, et al. Insights into the activation effect of H2 pretreatment on Ag/Al2O3 catalyst for the selective oxidation of ammonia[J]. ACS Catalysis, 2019, 9(2): 1437-1445. doi: 10.1021/acscatal.8b03744
|