[1] LI M K, ZHONG H, HE Z G, et al. Degradation of various thiol collectors in simulated and real mineral processing wastewater of sulfide ore in heterogeneous modified manganese slag/PMS system[J]. Chemical Engineering Journal, 2021, 413: 127478. doi: 10.1016/j.cej.2020.127478
[2] FU P F, FENG J, YANG T W, et al. Comparison of alkyl xanthates degradation in aqueous solution by the O3 and UV/O3 processes: Efficiency, mineralization and ozone utilization[J]. Minerals Engineering, 2015, 81: 128-134. doi: 10.1016/j.mineng.2015.08.001
[3] LOU J, LU G L, WEI Y, et al. Enhanced degradation of residual potassium ethyl xanthate in mineral separation wastewater by dielectric barrier discharge plasma and peroxymonosulfate[J]. Separation and Purification Technology, 2022, 282: 119955. doi: 10.1016/j.seppur.2021.119955
[4] JIANG M, ZHANG M H, WANG L Z, et al. Photocatalytic degradation of xanthate in flotation plant tailings by TiO2/graphene nanocomposites[J]. Chemical Engineering Journal, 2022, 431: 134104. doi: 10.1016/j.cej.2021.134104
[5] CHUANG Y H, SHI H J. UV/chlorinated cyanurates as an emerging advanced oxidation process for drinking water and potable reuse treatments[J]. Water Research, 2022, 211: 118075. doi: 10.1016/j.watres.2022.118075
[6] CHEN C T, MA C L, YANG Y Y, et al. Degradation of micropollutants in secondary wastewater effluent using nonthermal plasma-based AOPs: The roles of free radicals and molecular oxidants[J]. Water Research, 2023, 235: 119881. doi: 10.1016/j.watres.2023.119881
[7] XIE Z H, HE C S, PEI D N, et al. Review of characteristics, generation pathways and detection methods of singlet oxygen generated in advanced oxidation processes (AOPs)[J]. Chemical Engineering Journal, 2023, 468: 143778. doi: 10.1016/j.cej.2023.143778
[8] LU H Y, QIAN C Y, LUO S G, et al. Study on the influence and mechanism of polyferric sulfate on COD removal and reuse of scheelite flotation wastewater[J]. Minerals Engineering, 2023, 191: 107940. doi: 10.1016/j.mineng.2022.107940
[9] 林小凤, 傅平丰, 邹凤羽, 等. 高级氧化技术降解有机选矿药剂的研究进展[J]. 金属矿山, 2019(9): 1-7. LIN X F, FU P F, ZOU F Y, et al. Research progress on degradation of organic mineral processing reagents by advanced oxidation technology[J]. Metal Mine, 2019(9): 1-7 (in Chinese).
[10] 高凯, 李梅, 马林林, 等. 高级氧化法对选矿回水的降解研究[J]. 有色金属工程, 2020, 10(4): 65-71. doi: 10.3969/j.issn.2095-1744.2020.04.010 GAO K, LI M, MA L L, et al. Study on degradation of mineral processing recycle water by advanced oxidation processes[J]. Nonferrous Metals Engineering, 2020, 10(4): 65-71 (in Chinese). doi: 10.3969/j.issn.2095-1744.2020.04.010
[11] JIANG J C, AN Z X, LI M X, et al. Comparison of ribavirin degradation in the UV/H2O2 and UV/PDS systems: Reaction mechanism, operational parameter and toxicity evaluation[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109193. doi: 10.1016/j.jece.2022.109193
[12] MU S Q, CHEN X L, JIANG G B, et al. Fenton oxidation system for treating petroleum-contaminated solid waste: Advances and prospects[J]. Science of The Total Environment, 2023, 893: 164793. doi: 10.1016/j.scitotenv.2023.164793
[13] ARIFIN M N, JUSOH R, ABDULLAH H, et al. Recent advances in advanced oxidation processes (AOPs) for the treatment of nitro- and alkyl-phenolic compounds[J]. Environmental Research, 2023, 229: 115936. doi: 10.1016/j.envres.2023.115936
[14] BABUPONNUSAMI A, MUTHUKUMAR K. A review on Fenton and improvements to the Fenton process for wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 557-572. doi: 10.1016/j.jece.2013.10.011
[15] LIU Y, WANG J L. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: A critical review[J]. Chemical Engineering Journal, 2023, 466: 143147. doi: 10.1016/j.cej.2023.143147
[16] BEHROUZEH M, MEHDI PARIVAZH M, DANESH E, et al. Application of Photo-Fenton, Electro-Fenton, and Photo-Electro-Fenton processes for the treatment of DMSO and DMAC wastewaters[J]. Arabian Journal of Chemistry, 2022, 15(11): 104229. doi: 10.1016/j.arabjc.2022.104229
[17] 袁熙. MIL-101(Fe)类芬顿催化降解选矿废水中浮选药剂研究[D]. 赣州: 江西理工大学, 2021. YUAN X. Investigation on fenton-like degradation of flotation reagent in the beneficiation wastewater by MIL-101(Fe)[D]. Ganzhou: Jiangxi University of Science and Technology, 2021 (in Chinese).
[18] JIA X Q, XIE L B, LI Z, et al. Photo-electro-Fenton-like process for rapid ciprofloxacin removal: The indispensable role of polyvalent manganese in Fe-free system[J]. Science of the Total Environment, 2021, 768: 144368. doi: 10.1016/j.scitotenv.2020.144368
[19] de BARROS LIMA A, FALCONI I B A, TENÓRIO J A S, et al. Xanthate degradation at neutral and basics pH by Cu-Fenton-like process[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441: 114678. doi: 10.1016/j.jphotochem.2023.114678
[20] 袁熙, 廖荣, 祝思频, 等. MIL-101(Fe)用于光助芬顿催化降解苯胺黑药性能研究[J]. 江西理工大学学报, 2021, 42(4): 35-41. YUAN X, LIAO R, ZHU S P, et al. Degradation of aniline aerofloat by photo-Fenton catalyst MIL-101(Fe)[J]. Journal of Jiangxi University of Science and Technology, 2021, 42(4): 35-41 (in Chinese).
[21] WANG J, LIU C, FENG J Y, et al. MOFs derived Co/Cu bimetallic nanoparticles embedded in graphitized carbon nanocubes as efficient Fenton catalysts[J]. Journal of Hazardous Materials, 2020, 394: 122567. doi: 10.1016/j.jhazmat.2020.122567
[22] SHAO S, WANG G B, GONG Z M, et al. Insights into the role of hydroxyl group on carboxyl-modified MWCNTs in accelerating atenolol removal by Fe(Ⅲ)/H2O2 system[J]. Chemical Engineering Journal, 2021, 425: 130581. doi: 10.1016/j.cej.2021.130581
[23] ZHAO L F, WAN N, JIA Z A, et al. Efficient degradation of tetracycline: Performance and mechanism study of Fe3O4@CF composite electrode materials applied to a non-homogeneous photo-electro-Fenton process[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110211.
[24] LIU Z, DEMEESTERE K, van HULLE S. Comparison and performance assessment of ozone-based AOPs in view of trace organic contaminants abatement in water and wastewater: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105599. doi: 10.1016/j.jece.2021.105599
[25] 傅平丰, 马艳红, 林小凤, 等. 臭氧氧化乙硫氮的效率、能耗及中间产物生成研究[J]. 中国资源综合利用, 2019, 37(11): 17-22. doi: 10.3969/j.issn.1008-9500.2019.11.005 FU P F, MA Y H, LIN X F, et al. The ozonation of diethyl dithiocarbamate(SN-9) collector: Degradation efficiency, energy consumption and byproducts[J]. China Resources Comprehensive Utilization, 2019, 37(11): 17-22 (in Chinese). doi: 10.3969/j.issn.1008-9500.2019.11.005
[26] FENG X L, SUN D Z. Degradation characteristics of refractory organic matter in naproxen pharmaceutical secondary effluent using vacuum ultraviolet-ozone treatment[J]. Journal of Hazardous Materials, 2023, 459: 132056. doi: 10.1016/j.jhazmat.2023.132056
[27] FU P F, WANG L H, LI G, et al. Homogenous catalytic ozonation of aniline aerofloat collector by coexisted transition metallic ions in flotation wastewaters[J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103714. doi: 10.1016/j.jece.2020.103714
[28] 林小凤, 傅平丰, 马艳红, 等. 矿物催化臭氧氧化乙硫氨酯的效率和矿化行为研究[J]. 矿产保护与利用, 2020, 40(1): 1-7. LIN X F, FU P F, MA Y H, et al. Removal efficiency and mineralization in catalytic ozonation of O-isopropyl-N-ethyl thionocarbamate by minerals in flotation wastewaters[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 1-7 (in Chinese).
[29] ZHANG J, QIU J K, REN M Z, et al. Integrated ozonation and mineralization of alkyl xanthate: Influence of operation parameters and structure-activity relationship[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109912. doi: 10.1016/j.jece.2023.109912
[30] FU P F, WANG L H, LIN X F, et al. Ozonation of recalcitrant O-isopropyl-N-ethylthionocarbamate catalyzed by galena in flotation effluents and its dissolution behaviors[J]. Minerals Engineering, 2021, 165: 106859. doi: 10.1016/j.mineng.2021.106859
[31] LUO M Q, WANG Z Y, FANG S, et al. The enhance mechanism of DOM on tetracyclines degradation by electrochemical technology: A improvement of treatment processes[J]. Chemosphere, 2023, 334: 138913. doi: 10.1016/j.chemosphere.2023.138913
[32] XIE F S, GAO Y, ZHANG J B, et al. A novel bifunctional cathode for the generation and activation of H2O2 in electro-Fenton: Characteristics and mechanism[J]. Electrochimica Acta, 2022, 430: 141099. doi: 10.1016/j.electacta.2022.141099
[33] 聂蕊, 李天国, 徐晓军, 等. 浮选废水中烷基黄药的电催化内电解降解特征及机制[J]. 中国有色金属学报, 2018, 28(3): 594-603. NIE R, LI T G, XU X J, et al. Degradation characteristics and mechanisms of alkyl xanthates from flotation wastewater by ECIME process[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(3): 594-603 (in Chinese).
[34] LIU Z B, REN X, DUAN X Y, et al. Remediation of environmentally persistent organic pollutants (POPs) by persulfates oxidation system (PS): A review[J]. Science of the Total Environment, 2023, 863: 160818. doi: 10.1016/j.scitotenv.2022.160818
[35] NONG Y J, ZHANG Y L, HÜBNER U, et al. Roles of radical species in vacuum-UV/UV/peroxydisulfate advanced oxidation processes and contributions of the species to contaminant degradation at different water depths[J]. Journal of Hazardous Materials, 2023, 446: 130660. doi: 10.1016/j.jhazmat.2022.130660
[36] WU Z D, YANG L X, TANG Y B, et al. Dimethoate degradation by VUV/UV process: Kinetics, mechanism and economic feasibility[J]. Chemosphere, 2021, 273: 129724. doi: 10.1016/j.chemosphere.2021.129724
[37] FU P F, FENG J, YANG H F, et al. Degradation of sodium n-butyl xanthate by vacuum UV-ozone (VUV/O3) in comparison with ozone and VUV photolysis[J]. Process Safety and Environmental Protection, 2016, 102: 64-70. doi: 10.1016/j.psep.2016.02.010
[38] LIANG J L, WU J K, GAN P F, et al. The synergistic effect of radical and non-radical processes on the dephosphorization of dimethoate by vacuum ultraviolet: The overlooked roles of singlet oxygen atom and high-energy excited state[J]. Water Research, 2023, 247: 120775. doi: 10.1016/j.watres.2023.120775
[39] WANG C, ZHANG J, DU J Y, et al. Rapid degradation of norfloxacin by VUV/Fe2+/H2O2 over a wide initial pH: Process parameters, synergistic mechanism, and influencing factors[J]. Journal of Hazardous Materials, 2021, 416: 125893. doi: 10.1016/j.jhazmat.2021.125893
[40] ZENG H X, SHEN S W, CAI A H, et al. Degradation of tetracycline by UV/Fe3+/persulfate process: Kinetics, mechanism, DBPs yield, toxicity evaluation and bacterial community analysis[J]. Chemosphere, 2022, 307(Pt 4): 136072.
[41] 祝思频, 王春英, 王俊蔚, 等. Gd掺杂锐钛矿型TiO2光催化剂的制备及降解苯甲羟肟酸活性[J]. 硅酸盐学报, 2017, 45(10): 1495-1502. ZHU S P, WANG C Y, WANG J Y, et al. Preparation and degradation activity for benzohydroxamic acid of Gd-doped anatase TiO2 photocatalysts[J]. Journal of the Chinese Ceramic Society, 2017, 45(10): 1495-1502 (in Chinese).
[42] SHEN Y B, ZHOU P F, ZHAO S K, et al. Synthesis of high-efficient TiO2/clinoptilolite photocatalyst for complete degradation of xanthate[J]. Minerals Engineering, 2020, 159: 106640. doi: 10.1016/j.mineng.2020.106640
[43] WANG B W, WANG Y. A comprehensive review on persulfate activation treatment of wastewater[J]. Science of the Total Environment, 2022, 831: 154906. doi: 10.1016/j.scitotenv.2022.154906
[44] PARTHENIDIS P, EVGENIDOU E, LAMBROPOULOU D. Landfill leachate treatment by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs)[J]. Journal of Water Process Engineering, 2023, 53: 103768. doi: 10.1016/j.jwpe.2023.103768
[45] GAO Y, LIU Y Z, WANG W L, et al. Recent advances in the single-atom catalysts for persulfate activation and pollutant oxidation: A review[J]. Journal of Cleaner Production, 2023, 397: 136576. doi: 10.1016/j.jclepro.2023.136576
[46] CHEN N, LEE D, KANG H, et al. Catalytic persulfate activation for oxidation of organic pollutants: A critical review on mechanisms and controversies[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107654. doi: 10.1016/j.jece.2022.107654
[47] ZHANG Y Q, TRAN H P, DU X D, et al. Efficient pyrite activating persulfate process for degradation of p-chloroaniline in aqueous systems: A mechanistic study[J]. Chemical Engineering Journal, 2017, 308: 1112-1119. doi: 10.1016/j.cej.2016.09.104
[48] 齐亚兵. 活化过硫酸盐高级氧化法降解抗生素的研究进展[J]. 化工进展, 2022, 41(12): 6627-6643. QI Y B. Research progress on degradation of antibiotics by activated persulfate oxidation[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6627-6643 (in Chinese).
[49] WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
[50] CAI A H, DENG J, LING X, et al. Degradation of bisphenol A by UV/persulfate process in the presence of bromide: Role of reactive bromine[J]. Water Research, 2022, 215: 118288. doi: 10.1016/j.watres.2022.118288
[51] LI N, WU S, DAI H X, et al. Thermal activation of persulfates for organic wastewater purification: Heating modes, mechanism and influencing factors[J]. Chemical Engineering Journal, 2022, 450: 137976. doi: 10.1016/j.cej.2022.137976
[52] WANG M Y, LI T G, HOU Q Z, et al. Facile one-step preparation of Co and Ce doped TiO2 in visible light PMS activation for PAHs degradation[J]. Chemosphere, 2022, 308: 136360. doi: 10.1016/j.chemosphere.2022.136360
[53] 张磊, 祝思频, 袁熙, 等. 微波活化过硫酸盐降解典型选矿药剂丁基黄药的研究[J]. 有色金属工程, 2020, 10(11): 93-100. doi: 10.3969/j.issn.2095-1744.2020.11.014 ZHANG L, ZHU S P, YUAN X, et al. Study on the degradation of butyl xanthate by microwave activated persulfate[J]. Nonferrous Metals Engineering, 2020, 10(11): 93-100 (in Chinese). doi: 10.3969/j.issn.2095-1744.2020.11.014
[54] 张磊, 祝思频, 张青青, 等. 微波活化过硫酸盐降解典型选矿药剂水杨羟肟酸[J]. 环境化学, 2022, 41(10): 3414-3424. doi: 10.7524/j.issn.0254-6108.2021030801 ZHANG L, ZHU S P, ZHANG Q Q, et al. Degradation of salicylhydroxamic acid by microwave activated persulfate[J]. Environmental Chemistry, 2022, 41(10): 3414-3424 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021030801
[55] CHEN S H, XIONG P, ZHAN W, et al. Degradation of ethylthionocarbamate by pyrite-activated persulfate[J]. Minerals Engineering, 2018, 122: 38-43. doi: 10.1016/j.mineng.2018.03.022
[56] ALI J, LEI W L, SHAHZAD A, et al. Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: A new strategy to achieve maximum persulfate utilization efficiency[J]. Water Research, 2020, 181: 115862. doi: 10.1016/j.watres.2020.115862
[57] LAN J H, ZHANG Q, YANG G X, et al. Removal of tetracycline hydrochloride by N, P co-doped carbon encapsulated Fe2P activating PMS: A non-radical pathway dominated by singlet oxygen[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110481. doi: 10.1016/j.jece.2023.110481
[58] PENG W Y, DONG Y X, FU Y, et al. Non-radical reactions in persulfate-based homogeneous degradation processes: A review[J]. Chemical Engineering Journal, 2021, 421: 127818. doi: 10.1016/j.cej.2020.127818
[59] KULIŠŤÁKOVÁ A. Removal of pharmaceutical micropollutants from real wastewater matrices by means of photochemical advanced oxidation processes - A review[J]. Journal of Water Process Engineering, 2023, 53: 103727. doi: 10.1016/j.jwpe.2023.103727
[60] 万志豪, 潘家豪, 王春英, 等. 光助过硫酸盐氧化处理苯甲羟肟酸的研究[J]. 工业水处理, 2022, 42(7): 118-124. WAN Z H, PAN J H, WANG C Y, et al. Degradation of benzhydroxamic acid by UV activated persulfate[J]. Industrial Water Treatment, 2022, 42(7): 118-124 (in Chinese).
[61] 沈紫飞, 邓觅, 吴永明, 等. 吸附-臭氧氧化法去除选矿药剂乙硫氮及COD的实验研究[J]. 应用化工, 2023, 52(2): 420-425. doi: 10.3969/j.issn.1671-3206.2023.02.020 SHEN Z F, DENG M, WU Y M, et al. Experimental study on the removal of diethyldithiocarbamate and COD from mineral processing chemicals by adsorption-ozone oxidation[J]. Applied Chemical Industry, 2023, 52(2): 420-425 (in Chinese). doi: 10.3969/j.issn.1671-3206.2023.02.020
[62] WANG C, ZHAO Z W, DENG X Y, et al. Ultrafast oxidation of emerging contaminants by novel VUV/Fe2+/PS process at wide pH range: Performance and mechanism[J]. Chemical Engineering Journal, 2021, 426: 131921. doi: 10.1016/j.cej.2021.131921
[63] 梁锐, 李明阳, 高翔鹏, 等. 选矿废水中残留黄药光催化处理及降解效率改进方式研究进展[J]. 过程工程学报, 2022, 22(1): 1-13. LIANG R, LI M Y, GAO X P, et al. Research progress on photocatalytic treatment of residual xanthate in mineral processing wastewater and improvement of degradation efficiency[J]. The Chinese Journal of Process Engineering, 2022, 22(1): 1-13 (in Chinese).
[64] HUANG Y Z, JIA Y, ZUO L, et al. Comparison of VUV/H2O2 and VUV/PMS (peroxymonosulfate) for the degradation of unsymmetrical dimethylhydrazine in water[J]. Journal of Water Process Engineering, 2022, 49: 102970. doi: 10.1016/j.jwpe.2022.102970
[65] 张磊. 微波活化过硫酸盐处理选矿废水中残余有机药剂的研究[D]. 赣州: 江西理工大学, 2021. ZHANG L. The treatment of residual organic agents in beneficiation wastewater by microwave activated persulfate[D]. Ganzhou: Jiangxi University of Science and Technology, 2021 (in Chinese).
[66] QIN Y J, LUO S, GENG S, et al. Degradation and mineralization of aniline by O3/Fenton process enhanced using high-gravity technology[J]. Chinese Journal of Chemical Engineering, 2018, 26(7): 1444-1450. doi: 10.1016/j.cjche.2018.01.018
[67] 张大超, 吴梦, 陈敏, 等. VUV/O3降解选矿药剂酯-105的实验研究[J]. 水处理技术, 2019, 45(5): 77-81. ZHANG D C, WU M, CHEN M, et al. Degradation of ester-105 of beneficiation reagent by VUV/O3[J]. Technology of Water Treatment, 2019, 45(5): 77-81 (in Chinese).
[68] 毛珺, 黄河, 莫慧敏, 等. 真空紫外辐照法降解水中丁基黄原酸钾的影响因素及动力学模型[J]. 环境科学学报, 2020, 40(9): 3233-3240. MAO J, HUANG H, MO H M, et al. Influencing factors and kinetic model of the degradation of potassium butyl xanthan in water by vacuum ultraviolet irradiation[J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3233-3240 (in Chinese).
[69] WANG J L, WANG S Z. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants[J]. Chemical Engineering Journal, 2021, 411: 128392. doi: 10.1016/j.cej.2020.128392
[70] 刘宇程, 杨冰, 李沁蔓, 等. Cl和pH对高级氧化工艺去除含盐废水中有机物的影响及机理[J]. 环境工程学报, 2021, 15(5): 1487-1499. doi: 10.12030/j.cjee.202009046 LIU Y C, YANG B, LI Q M, et al. Effects and mechanism of Cl and pH on organic matter removal in saltcontaining wastewater treatment by advanced oxidation processes[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1487-1499 (in Chinese). doi: 10.12030/j.cjee.202009046
[71] OYEKUNLE D T, CAI J Y, GENDY E A, et al. Impact of chloride ions on activated persulfates based advanced oxidation process (AOPs): A mini review[J]. Chemosphere, 2021, 280: 130949. doi: 10.1016/j.chemosphere.2021.130949
[72] FENG Y P, SONG Q Y, LV W Y, et al. Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices[J]. Chemosphere, 2017, 189: 643-651. doi: 10.1016/j.chemosphere.2017.09.109
[73] MA J, YANG Y Q, JIANG X, et al. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water[J]. Chemosphere, 2018, 190: 296-306. doi: 10.1016/j.chemosphere.2017.09.148
[74] QIN W, PENG J S, YANG J R, et al. UV absorbance and electron donating capacity as surrogate parameters to indicate the abatement of micropollutants during the oxidation of Fe(II)/PMS and Mn(II)/NTA/PMS[J]. Environmental Research, 2023, 232: 116253. doi: 10.1016/j.envres.2023.116253
[75] DONG C C, FANG W Z, YI Q Y, et al. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs)[J]. Chemosphere, 2022, 308: 136205. doi: 10.1016/j.chemosphere.2022.136205
[76] 王亮华, 许伟航, 傅平丰, 等. 浮选废水中共存离子对臭氧氧化苯胺黑药的影响研究[J]. 矿产保护与利用, 2021, 41(1): 1-8. WANG L H, XU W H, FU P F, et al. Influence of coexisted ions in flotation wastewater on the ozonation aniline aerofloat[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 1-8 (in Chinese).
[77] CHENG S S, ZHAO Y J, PAN Y H, et al. Quantification of the diverse inhibitory effects of dissolved organic matter on transformation of micropollutants in UV/persulfate treatment[J]. Water Research, 2022, 223: 118967. doi: 10.1016/j.watres.2022.118967
[78] WANG Y R, COUET M, GUTIERREZ L, et al. Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation[J]. Water Research, 2020, 172: 115463. doi: 10.1016/j.watres.2019.115463
[79] DIAO Z H, YAN L, DONG F X, et al. Degradation of 2, 4-dichlorophenol by a novel iron based system and its synergism with Cd(II) immobilization in a contaminated soil[J]. Chemical Engineering Journal, 2020, 379: 122313. doi: 10.1016/j.cej.2019.122313
[80] CHEN H, LIN T, WANG P F, et al. A novel solar-activated chlorine dioxide process for atrazine degradation in drinking water[J]. Water Research, 2023, 239: 120056. doi: 10.1016/j.watres.2023.120056