[1] LIU R, CHEN L, SONG X, et al. Treatment of digested piggery wastewater with a membrane bioreactor[J]. Environmental Engineering and Management Journal, 2016, 15(10): 2181-2188. doi: 10.30638/eemj.2016.236
[2] ZENG Z, ZHENG P, KANG D, et al. The removal of copper and zinc from swine wastewater by anaerobic biological-chemical process: Performance and mechanism[J]. Journal of Hazardous Materials, 2021, 401: 123767. doi: 10.1016/j.jhazmat.2020.123767
[3] 屈健. 畜禽粪便中铜锌的污染及治理研究进展[J]. 农学学报, 2022, 12(7): 61-63. doi: 10.11923/j.issn.2095-4050.cjas2020-0209
[4] CHENG D L, NGO H H, GUO W S, et al. Bioprocessing for elimination antibiotics and hormones from swine wastewater[J]. Science of the Total Environment, 2018, 621: 1664-1682. doi: 10.1016/j.scitotenv.2017.10.059
[5] 周婧, 支苏丽, 宫祥静, 等. 三类抗生素在两种典型猪场废水处理工艺中的去除效果[J]. 农业环境科学学报, 2019, 38(2): 430-438. doi: 10.11654/jaes.2018-1092
[6] 杨钊. 厌氧共代谢去除养猪场废水中兽用抗生素的效能研究[D]. 贵州: 贵州大学, 2020.
[7] 赵伟, 范增增, 杨新萍. 水平潜流人工湿地对畜禽养殖废水中特征污染物的去除[J]. 环境科学, 2021, 42(12): 5865-5875.
[8] STEFANAKIS A, AKRATOS C S, TSIHRINTZIS V A, Chapter 2 - Constructed Wetlands Classification[M]. in Vertical Flow Constructed Wetlands, 2014, Elsevier: Boston.
[9] DU L, ZHAO Y, WANG C, et al. Removal performance of antibiotics and antibiotic resistance genes in swine wastewater by integrated vertical-flow constructed wetlands with zeolite substrate[J]. Science of the Total Environment, 2020, 721: 137765. doi: 10.1016/j.scitotenv.2020.137765
[10] 杨玲丽, 马琳, 刘伟, 等. 铜和磺胺甲恶唑复合污染下人工湿地对禽畜养殖尾水的处理效果[J]. 水生生物学报, 2022, 46(10): 1484-1493. doi: 10.7541/2022.2022.0168
[11] 王晓洁, 赵蔚, 张志超, 等. 兽用抗生素在土壤中的环境行为、生态毒性及危害调控[J]. 中国科学: 技术科学, 2021, 51(6): 615-636.
[12] 田彪, 卿黎, 罗晶晶, 等. 重金属铜和铅的生态毒性归一化及土壤环境基准研究[J]. 环境科学学报, 2022, 42(3): 431-440.
[13] MALCHAIR S, CARNOL M. Microbial biomass and C and N transformations in forest floors under European beech, sessile oak, Norway spruce and Douglas-fir at four temperate forest sites[J]. Soil Biology and Biochemistry, 2009, 41(4): 831-839. doi: 10.1016/j.soilbio.2009.02.004
[14] 邢红爽, 乌佳美, 陈健, 等. 植物光合作用限制因素与植被生产力研究进展[J]. 生态学报, 2023, 43(12): 5186-5199.
[15] LV M, ZHANG D, NIU X, et al. Insights into the fate of antibiotics in constructed wetland systems: Removal performance and mechanisms[J]. Journal of Environmental Management, 2022, 321: 116028. doi: 10.1016/j.jenvman.2022.116028
[16] LIU L, LIU C, ZHENG J, et al. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands[J]. Chemosphere, 2013, 91(8): 1088-1093. doi: 10.1016/j.chemosphere.2013.01.007
[17] CHENG X, PENG R, CHEN J, et al. CH4 and N2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms[J]. Chemosphere, 2007, 68(3): 420-427. doi: 10.1016/j.chemosphere.2007.01.004
[18] 杨升. 不同构型潜流湿地对养猪废水深度处理的研究[D]. 南京: 南京农业大学, 2023.
[19] ZENG L, TAO R, TAM N F Y, et al. Differences in bacterial N, P, and COD removal in pilot-scale constructed wetlands with varying flow types[J]. Bioresource Technology, 2020, 318: 124061. doi: 10.1016/j.biortech.2020.124061
[20] 艾超. 长期施肥下根际碳氮转化与微生物多样性研究[D]. 北京: 中国农业科学院, 2015.
[21] 王礼霄. 半人工湿地植物香蒲根系微生物群落的时空分异及构建过程[D]. 太原: 山西大学, 2022.
[22] 李明珠. 磺胺嘧啶和铜单一及复合污染对土壤微生物的毒性效应及其修复[D]. 淄博: 山东理工大学, 2019.
[23] LUCAS J M, SONE B M, WHITMORE D, et al. Antibiotics and temperature interact to disrupt soil communities and nutrient cycling[J]. Soil Biology and Biochemistry, 2021, 163: 108437. doi: 10.1016/j.soilbio.2021.108437
[24] 段美娜, 覃亮, 龙婧, 等. 镉和铜对海洋浮游植物的毒性效应及其机制研究进展[J]. 广东海洋大学学报, 2021, 41(2): 139-148. doi: 10.3969/j.issn.1673-9159.2021.02.019
[25] 李淑英, 徐道青, 刘小玲, 等. 畜禽抗生素对植物的生态毒理效应综述[J]. 生态毒理学报,2023,18( 4) : 188-206.
[26] NKOH J N, SHANG C, OKEKE E S, et al. Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants[J]. Journal of Environmental Management, 2024, 354: 120312. doi: 10.1016/j.jenvman.2024.120312
[27] 张宇, 高悦, 周紫阳, 等. 施氮量对不同品种高粱光合特性及产量的影响[J]. 分子植物育种, 2024, 22(10): 3299-3305.
[28] 林兵, 武胜利, 管文轲, 等. 胡杨叶片的胞间CO2浓度及气孔和非气孔限制的探究[J]. 湖北农业科学, 2021, 60(13): 87-92.
[29] LIU L, LIU Y-H, LIU C-X, et al. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions[J]. Ecological Engineering, 2013, 53: 138-143. doi: 10.1016/j.ecoleng.2012.12.033
[30] 杨勇, 夏运生, 念江稳, 等. 环丙沙星和土霉素对烤烟幼苗生长发育和光合特性的影响[J]. 华中农业大学学报, 2023, 42(6): 196-204.
[31] WEN J, ZOU D. Interactive effects of increasing atmospheric CO2 and copper exposure on the growth and photosynthesis in the young sporophytes of Sargassum fusiforme (Phaeophyta)[J]. Chemosphere, 2021, 269: 129397. doi: 10.1016/j.chemosphere.2020.129397