[1] |
夏艳阳, 崔理华, 黄小龙. 污水碳源对复合垂直流-水平流人工湿地脱氮效果的影响[J]. 环境工程学报, 2017, 11(1): 638-644. doi: 10.12030/j.cjee.201509223
|
[2] |
IPCC. Climate change 2022: mitigation of climate change[EB/OL]. [2024-03-11], https://www.ipcc.ch/report/ar6/wg3/.pdf, 2022.
|
[3] |
WANG Y, ZHANG Y, WANG J, et al. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria[J]. Biomass and Bioenergy, 2009, 33(5): 848-853. doi: 10.1016/j.biombioe.2009.01.007
|
[4] |
TA D T, LIN C Y, TA T M N, et al. Biohythane production via single-stage anaerobic fermentation using entrapped hydrogenic and methanogenic bacteria[J]. Bioresource Technology, 2020, 300: 122702. doi: 10.1016/j.biortech.2019.122702
|
[5] |
WUNDERLIN P, MOHN J, JOSS A, et al. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions[J]. Water Research, 2012, 46(4): 1027-1037. doi: 10.1016/j.watres.2011.11.080
|
[6] |
LI Z Q, KONG L W, HU L P, et al. Greenhouse gas emissions from constructed wetlands: A bibliometric analysis and mini-review[J]. Science of the Total Environment, 2024, 906: 167582. doi: 10.1016/j.scitotenv.2023.167582
|
[7] |
PHILIPPOT L. Denitrifying genes in bacterial and Archaeal genomes[J]. Biochim Biophys Acta, 2002, 1577(3): 355-376. doi: 10.1016/S0167-4781(02)00420-7
|
[8] |
SCHREIBER F, WUNDERLIN P, UDERT K M, et al. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies[J]. Frontiers in Microbiology, 2012, 3: 372.
|
[9] |
SUN Z Z, DZAKPASU M, ZHAO L P, et al. Enhancement of partial denitrification-anammox pathways in constructed wetlands by plant-based external carbon sources[J]. Journal of Cleaner Production, 2022, 370: 133581. doi: 10.1016/j.jclepro.2022.133581
|
[10] |
ZHANG L J, LIU Y L, LV S C, et al. An overview on constructed wetland-microbial fuel cell: Greenhouse gases emissions and extracellular electron transfer[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109551. doi: 10.1016/j.jece.2023.109551
|
[11] |
CHEN D Y, GU X S, ZHU W Y, et al. Electrons transfer determined greenhouse gas emissions in enhanced nitrogen-removal constructed wetlands with different carbon sources and carbon-to-nitrogen ratios[J]. Bioresource Technology, 2019, 285: 121313. doi: 10.1016/j.biortech.2019.121313
|
[12] |
LIU W L, CHU Y F, TAN Q Y, et al. Cold temperature mediated nitrate removal pathways in electrolysis-assisted constructed wetland systems under different influent C/N ratios and anode materials[J]. Chemosphere, 2022, 295: 133867. doi: 10.1016/j.chemosphere.2022.133867
|
[13] |
LYU W, HUANG L, XIAO G Q, et al. Effects of carbon sources and COD/N ratio on N2O emissions in subsurface flow constructed wetlands[J]. Bioresource Technology, 2017, 245: 171-181. doi: 10.1016/j.biortech.2017.08.056
|
[14] |
LU S L, HU H Y, SUN Y X, et al. Effect of carbon source on the denitrification in constructed wetlands[J]. Journal of Environmental Sciences, 2009, 21(8): 1036-1043. doi: 10.1016/S1001-0742(08)62379-7
|
[15] |
XU Y F, LIU Y H, ZHANG W, et al. Optimization of C/N and carbon types on the denitrification biofilter for advanced wastewater treatment[J]. Desalination and Water Treatment, 2018, 119: 107-117. doi: 10.5004/dwt.2018.22430
|
[16] |
YUAN C B, ZHAO F C, ZHAO X H, et al. Woodchips as sustained-release carbon source to enhance the nitrogen transformation of low C/N wastewater in a baffle subsurface flow constructed wetland[J]. Chemical Engineering Journal, 2020, 392: 124840. doi: 10.1016/j.cej.2020.124840
|
[17] |
邵留, 徐祖信, 王晟, 等. 新型反硝化固体碳源释碳性能研究[J]. 环境科学, 2011, 32(8): 2323-2327.
|
[18] |
孙琳琳, 宋协法, 李甍, 等. 外加植物碳源对人工湿地处理海水循环水养殖尾水脱氮性能的影响[J]. 环境工程学报, 2019, 13(6): 1382-1390. doi: 10.12030/j.cjee.201810061
|
[19] |
许兵, 张旭, 刘佳, 等. 植物碳源对人工湿地脱氮过程的影响[J]. 工业水处理, 2021, 41(12): 89-94,114.
|
[20] |
卢兴顺, 丁晓宇, 林岩, 等. 外加植物碳源强化人工湿地处理农田退水效能分析[J]. 环境工程学报, 2022, 16(5): 1537-1548. doi: 10.12030/j.cjee.202112022
|
[21] |
赵联芳, 贺丽, 梅才华, 等. 外置植物碳源型人工湿地系统反硝化脱氮效果及N2O释放[J]. 安全与环境学报, 2018, 18(01): 276-281.
|
[22] |
胡曼利. 外加植物碳源和稀碱加热预处理强化潜流人工湿地对低C/N污水的处理效果[D]. 重庆: 西南大学, 2022.
|
[23] |
ZHOU X, GAO L, ZHANG H, et al. Determination of the optimal aeration for nitrogen removal in biochar-amended aerated vertical flow constructed wetlands[J]. Bioresource Technology, 2018, 261: 461-464. doi: 10.1016/j.biortech.2018.04.028
|
[24] |
国家环境保护总局. 水和废水监测分析方法 (第四版)[M]. 北京: 中国环境科学出版社, 2002.
|
[25] |
赵仲婧, 郝庆菊, 涂婷婷, 等. 铁碳微电解填料对人工湿地温室气体排放的影响[J]. 环境科学, 2021, 42(7): 3482-3493.
|
[26] |
胡曼利, 郝庆菊, 马容真, 等. 玉米芯和稻草秸秆强化潜流人工湿地对低C/N污水的处理效果[J]. 环境科学, 2022, 43(8): 4136-4145.
|
[27] |
张旭, 刘佳, 许兵, 等. 添加生态型植物碳源对人工湿地脱氮除磷效果的研究[J]. 安全与环境工程, 2022, 29(2): 199-204,220.
|
[28] |
ZHAO J H, ZHAO Y Q, XU Z H, et al. Highway runoff treatment by hybrid adsorptive media-baffled subsurface flow constructed wetland[J]. Ecological Engineering, 2016, 91: 231-239. doi: 10.1016/j.ecoleng.2016.02.020
|
[29] |
CHAND N, KUMAR K, SUTHAR S. “Cattle dung biochar-packed vertical flow constructed wetland for nutrient removal”: Effect of intermittent aeration and wastewater COD/N loads on the removal process[J]. Journal of Water Process Engineering, 2021, 43: 102215. doi: 10.1016/j.jwpe.2021.102215
|
[30] |
ZHANG J M, FENG C P, HONG S Q, et al. Behavior of solid carbon sources for biological denitrification in groundwater remediation.[J]. Water Science & Technology, 2012, 65(9): 1696-1704.
|
[31] |
ZHANG M M, LUO P, LIU F, et al. Nitrogen removal and distribution of ammonia-oxidizing and denitrifying genes in an integrated constructed wetland for swine wastewater treatment[J]. Ecological Engineering, 2017, 104: 30-38. doi: 10.1016/j.ecoleng.2017.04.022
|
[32] |
WU S B, VYMAZAL J, BRIX H. Critical review: Biogeochemical networking of iron in constructed wetlands for wastewater treatment.[J]. Environmental Science & Technology, 2019, 53(14): 7930-7944.
|
[33] |
STEFANAKIS A I, AKRATOS C S, GIKAS G D, et al. Effluent quality improvement of two pilot-scale, horizontal subsurface flow constructed wetlands using natural zeolite (clinoptilolite)[J]. Microporous and Mesoporous Materials, 2009, 124(1): 131-143.
|
[34] |
GIKAS G D, TSIHRINTZIS V A. A small-size vertical flow constructed wetland for on-site treatment of household wastewater[J]. Ecological Engineering, 2012, 44: 337-343. doi: 10.1016/j.ecoleng.2012.04.016
|
[35] |
HE H L, DUAN Z W, WANG Z Q, et al. The removal efficiency of constructed wetlands filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment.[J]. Environmental Science and Pollution Research, 2017, 24(21): 17547-17555. doi: 10.1007/s11356-017-9402-x
|
[36] |
STEFANAKIS A I, TSIHRINTZIS V A. Use of zeolite and bauxite as filter media treating the effluent of vertical flow constructed wetlands[J]. Microporous and Mesoporous Materials, 2012, 155: 106-116. doi: 10.1016/j.micromeso.2012.01.022
|
[37] |
ZHOU T T, LIU J G, LIE Z Y, et al. Effects of applying different carbon substrates on nutrient removal and greenhouse gas emissions by constructed wetlands treating carbon-depleted hydroponic wastewater[J]. Bioresource Technology, 2022, 357: 127312. doi: 10.1016/j.biortech.2022.127312
|
[38] |
ZHOU X, WANG X X, ZHANG H, et al. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland[J]. Bioresource Technology, 2017, 241: 269-275. doi: 10.1016/j.biortech.2017.05.072
|
[39] |
ZHAO X, WANG R G, DONG L, et al. Simultaneous removal of nitrogen and dimethyl phthalate from low-carbon wastewaters by using intermittently-aerated constructed wetlands[J]. Journal of Hazardous Materials, 2021, 404(Pt A): 124130.
|
[40] |
TAN X, YANG Y L, LI X, et al. Multi-metabolism regulation insights into nutrients removal performance with adding heterotrophic nitrification-aerobic denitrification bacteria in tidal flow constructed wetlands[J]. Science of the Total Environment, 2021, 796: 149023. doi: 10.1016/j.scitotenv.2021.149023
|
[41] |
WALLER L J, EVANYLO G K, KROMETIS L A H, et al. Engineered and environmental controls of microbial denitrification in established bioretention cells[J]. Environmental Science & Technology, 2018, 52(9): 5358-5366.
|
[42] |
XIONG R, YU X X, ZHANG Y G, et al. Comparison of agricultural wastes and synthetic macromolecules as solid carbon source in treating low carbon nitrogen wastewater[J]. Science of the Total Environment, 2020, 739: 139885. doi: 10.1016/j.scitotenv.2020.139885
|
[43] |
ZHANG F Z, PENG Y Z, LI B K, et al. Novel insights into integrated fermentation and nitrogen removal by free nitrous acid (FNA) serving as treatment method[J]. Journal of Hazardous Materials, 2020, 381: 120835. doi: 10.1016/j.jhazmat.2019.120835
|
[44] |
ZHENG Y C, WANG Z Z, CAO T, et al. Enhancement effects and pathways of nitrogen removal by plant-based carbon source in integrated vertical flow constructed wetlands[J]. Journal of Water Process Engineering, 2022, 47: 102734. doi: 10.1016/j.jwpe.2022.102734
|
[45] |
XU J, HUANG X X, LUO P, et al. Effect of plant-self debris on nitrogen removal, transformation and microbial community in mesocosm constructed wetlands planted with Myriophyllum aquaticum[J]. Journal of Environmental Management, 2023, 340: 117981. doi: 10.1016/j.jenvman.2023.117981
|
[46] |
VIDAL-GAVILAN G, CARREY R, SOLANAS A, et al. Feeding strategies for groundwater enhanced biodenitrification in an alluvial aquifer: Chemical, microbial and isotope assessment of a 1D flow-through experiment[J]. Science of the Total Environment, 2014, 494-495: 241-251. doi: 10.1016/j.scitotenv.2014.06.100
|
[47] |
李思倩, 路立, 王芬, 等. 低温反硝化过程中pH对亚硝酸盐积累的影响[J]. 环境化学, 2016, 35(8): 1657-1662. doi: 10.7524/j.issn.0254-6108.2016.08.2016011105
|
[48] |
周梦娟, 缪恒锋, 陆震明, 等. 碳源对反硝化细菌的反硝化速率和群落结构的影响[J]. 环境科学研究, 2018, 31(12): 2047-2054.
|
[49] |
CABRED S, RAMOS V G, BUSALMEN J E, et al. Reduced depth stacked constructed wetlands for enhanced urban wastewater treatment[J]. Chemical Engineering Journal, 2019, 372: 708-714. doi: 10.1016/j.cej.2019.04.180
|
[50] |
JIA W, SUN X, GAO Y, et al. Fe-modified biochar enhances microbial nitrogen removal capability of constructed wetland[J]. Science of the Total Environment, 2020, 740: 139534. doi: 10.1016/j.scitotenv.2020.139534
|
[51] |
寄博华. 电子供体添加下铁碳微电解人工湿地净化低C/N比污水的效能及其作用机制研究[D]. 昆明: 云南大学, 2021.
|
[52] |
王晓锋, 龙雨行, 余乐乐, 等. 不同水生植物对景观水体CO2与CH4排放通量的影响[J]. 生态学报, 2023, 43(9): 3592-3606.
|
[53] |
何强, 胡书山, 向泽毅, 等. 垂直流人工湿地系统净化污水厂尾水脱氮效果研究[J]. 中国环境科学, 2023, 43(8): 3956-3965. doi: 10.3969/j.issn.1000-6923.2023.08.011
|
[54] |
许兵, 郭培勋, 刘佳, 等. 利用农业废弃物强化人工湿地处理污水处理厂尾水机理研究[J]. 农业环境科学学报, 2024, 43(2): 411-418. doi: 10.11654/jaes.2023-0247
|
[55] |
FUCHS V J, MIHELCIC J R, GIERKE J S. Life cycle assessment of vertical and horizontal flow constructed wetlands for wastewater treatment considering nitrogen and carbon greenhouse gas emissions[J]. Water Research, 2011, 45(5): 2073-2081. doi: 10.1016/j.watres.2010.12.021
|
[56] |
张燕, 周巧红, 徐栋, 等. 不同C/N下人工湿地的脱氮效果及其强化措施[J]. 环境工程学报, 2013, 7(11): 4246-4250.
|
[57] |
肖蕾, 贺锋, 梁雪, 等. 不同碳源添加量对垂直流人工湿地污水处理效果的影响[J]. 环境工程学报, 2013, 7(6): 2074-2080.
|
[58] |
肖海文. 城市径流特征与人工湿地处理技术研究[D]. 重庆: 重庆大学, 2010.
|
[59] |
徐凤英, 樊科峰, 周炯, 等. 低温下改良SBBR脱氮除磷效能及微生物种群研究[J]. 中国给水排水, 2022, 38(9): 82-87.
|
[60] |
CHEN X, ZHU H, YAN B X, et al. Optimal influent COD/N ratio for obtaining low GHG emissions and high pollutant removal efficiency in constructed wetlands[J]. Journal of Cleaner Production, 2020, 267: 122003. doi: 10.1016/j.jclepro.2020.122003
|
[61] |
ZHAO Z J, HAO Q J, MA R Z, et al. Ferric-carbon micro-electrolysis and zeolite reduce CH4 and N2O emissions from the aerated constructed wetland[J]. Journal of Cleaner Production, 2022, 342: 130946. doi: 10.1016/j.jclepro.2022.130946
|
[62] |
BOND D R, LOVLEY D R. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones.[J]. Environmental Microbiology, 2002, 4(2): 115-124. doi: 10.1046/j.1462-2920.2002.00279.x
|