[1] |
ZHAO L, DENG J H, SUN P Z, et al. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis[J]. Science of the Total Environment, 2018, 627: 1253-1263. doi: 10.1016/j.scitotenv.2018.02.006
|
[2] |
WANG S Z, WANG J L. Carbamazepine degradation by gamma irradiation coupled to biological treatment[J]. Journal of Hazardous Materials, 2017, 321: 639-646. doi: 10.1016/j.jhazmat.2016.09.053
|
[3] |
HAI F I, LI X, PRICE W E, et al. Removal of carbamazepine and sulfamethoxazole by MBR under anoxic and aerobic conditions[J]. Bioresource Technology, 2011, 102(22): 10386-10390. doi: 10.1016/j.biortech.2011.09.019
|
[4] |
AKPINAR I, YAZAYDIN A O. Rapid and efficient removal of carbamazepine from water by UiO-67[J]. Industrial & Engineering Chemistry Research, 2017, 56(51): 15122-15130.
|
[5] |
KHAREL S, STAPF M, MIEHE U, et al. Removal of pharmaceutical metabolites in wastewater ozonation including their fate in different post-treatments[J]. Science of the Total Environment, 2021, 759: 143989. doi: 10.1016/j.scitotenv.2020.143989
|
[6] |
WANG Z, CHU Y, CHANG H, et al. Advanced insights on removal of antibiotics by microalgae-bacteria consortia: A state-of-the-art review and emerging prospects[J]. Chemosphere, 2022, 307(Pt 4): 136117.
|
[7] |
FU W, LI X, YANG Y, et al. Enhanced degradation of bisphenol A: Influence of optimization of removal, kinetic model studies, application of machine learning and microalgae-bacteria consortia[J]. Science of the Total Environment, 2023, 858(Pt 2): 159876.
|
[8] |
MASUD N, DAVIES-JONES A, GRIFFIN B, et al. Differential effects of two prevalent environmental pollutants on host-pathogen dynamics[J]. Chemosphere, 2022, 295: 133879. doi: 10.1016/j.chemosphere.2022.133879
|
[9] |
LIANG L, BAI X, HUA Z L. Enhancement of the immobilization on microalgae protective effects and carbamazepine removal by Chlorella vulgaris[J]. Environmental Science and Pollution Research, 2022, 29(52): 79567-79578. doi: 10.1007/s11356-022-21418-0
|
[10] |
LI X Q, DE TOLEDO R A, WANG S P, et al. Removal of carbamazepine and naproxen by immobilized Phanerochaete chrysosporium under non-sterile condition[J]. New Biotechnology, 2015, 32(2): 282-289. doi: 10.1016/j.nbt.2015.01.003
|
[11] |
CHENG Z W, LU L C, KENNES C, et al. Treatment of gaseous toluene in three biofilters inoculated with fungi/bacteria: Microbial analysis, performance and starvation response[J]. Journal of Hazardous Materials, 2016, 303: 83-93. doi: 10.1016/j.jhazmat.2015.10.017
|
[12] |
ERBA C M, TANGERINO E P, De CARVALHO S L, et al. Removal of diclofenac, ibuprofen, naproxen, and paracetamol in ecological filter followed by granular carbon filter biologically active[J]. Engenharia Sanitaria e Ambiental, 2013, 17(2): 137-142.
|
[13] |
SEYMOUR J R, AMIN S A, RAINA J B, et al. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships[J]. Nature Microbiology, 2017, 2(7): 17065. doi: 10.1038/nmicrobiol.2017.65
|
[14] |
WANG Z Y, CHU Y H, CHANG H X, et al. Advanced insights on removal of antibiotics by microalgae-bacteria consortia: A state-of-the-art review and emerging prospects[J]. Chemosphere, 2022, 307: 136117. doi: 10.1016/j.chemosphere.2022.136117
|
[15] |
ZHANG J, XIA A, YAO D, et al. Removal of oxytetracycline and ofloxacin in wastewater by microalgae-bacteria symbiosis for bioenergy production[J]. Bioresource Technology, 2022, 363: 127891. doi: 10.1016/j.biortech.2022.127891
|
[16] |
YOU X Q, XU N, YANG X, et al. Pollutants affect algae-bacteria interactions: A critical review[J]. Environmental Pollution, 2021, 276: 116723. doi: 10.1016/j.envpol.2021.116723
|
[17] |
HU W, LIANG J, JU F, et al. Metagenomics unravels differential microbiome composition and metabolic potential in rapid sand filters purifying surface water versus groundwater[J]. Environmental Science & Technology, 2020, 54(8): 5197-5206.
|
[18] |
JOH G, CHOI Y S, SHIN J K, et al. Problematic algae in the sedimentation and filtration process of water treatment plants[J]. Journal of Water Supply Research and Technology-Aqua, 2011, 60(5): 319. doi: 10.2166/aqua.2011.000
|
[19] |
ZHOU H, FU C. Manganese-oxidizing microbes and biogenic manganese oxides: Characterization, Mn(II) oxidation mechanism and environmental relevance[J]. Reviews in Environmental Science and Bio-technology, 2020, 19(3): 489-507. doi: 10.1007/s11157-020-09541-1
|
[20] |
FURGAL K M, MEYER R L, BESTER K. Removing selected steroid hormones, biocides and pharmaceuticals from water by means of biogenic manganese oxide nanoparticles in situ at ppb levels[J]. Chemosphere, 2015, 136: 321-326. doi: 10.1016/j.chemosphere.2014.11.059
|
[21] |
CHEN R, ZHANG H, WANG J, et al. Insight into the role of biogenic manganese oxides-assisted gravity-driven membrane filtration systems toward emerging contaminants removal[J]. Water Research, 2022, 224: 119111. doi: 10.1016/j.watres.2022.119111
|
[22] |
REN C Y, XU Q J, ALVAREZ P J J, et al. Simultaneous antibiotic removal and mitigation of resistance induction by manganese bio-oxidation process[J]. Water Research, 2023, 244: 120442. doi: 10.1016/j.watres.2023.120442
|
[23] |
戚菁, 林泽淼, 赵济金, 等. 一种藻类提升细菌锰氧化功能的方法: CN202111084994 [P]. 2021-12-07.
|
[24] |
BAI Y, CHANG Y, LIANG J, et al. Treatment of groundwater containing Mn(II), Fe(II), As(III) and Sb(III) by bioaugmented quartz-sand filters[J]. Water Research, 2016, 106: 126-134. doi: 10.1016/j.watres.2016.09.040
|
[25] |
QI J, SONG Y, LIANG J, et al. Growth inhibition of Microcystis aeruginosa by sand-filter prevalent manganese-oxidizing bacterium[J]. Separation and Purification Technology, 2021, 256: 117808. doi: 10.1016/j.seppur.2020.117808
|
[26] |
SHEN H, SONG L. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis[J]. Hydrobiologia, 2007, 592(1): 475-486. doi: 10.1007/s10750-007-0794-3
|
[27] |
GESZVAIN K, BUTTERFIELD C, DAVIS R E, et al. The molecular biogeochemistry of manganese(II) oxidation[J]. Biochemical Society Transactions, 2012, 40: 1244-1248. doi: 10.1042/BST20120229
|
[28] |
WANG R, WANG S, TAI Y P, et al. Biogenic manganese oxides generated by green algae Desmodesmus sp WR1 to improve bisphenol A removal[J]. Journal of Hazardous Materials, 2017, 339: 310-319. doi: 10.1016/j.jhazmat.2017.06.026
|
[29] |
VILLALOBOS M, LANSON B, MANCEAU A, et al. Structural model for the biogenic Mn oxide produced by Pseudomonas putida[J]. American Mineralogist, 2006, 91(4): 489-502. doi: 10.2138/am.2006.1925
|
[30] |
ZHANG H C, HUANG C H. Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide[J]. Environmental Science & Technology, 2005, 39(12): 4474-4483.
|
[31] |
ZHOU N Q, LIU D F, MIN D, et al. Continuous degradation of ciprofloxacin in a manganese redox cycling system driven by Pseudomonas putida MnB-1[J]. Chemosphere, 2018, 211: 345-351. doi: 10.1016/j.chemosphere.2018.07.117
|
[32] |
WANG Z K, YU S M, NIE Y F, et al. Effect of acetochlor on the symbiotic relationship between microalgae and bacteria[J]. Journal of Hazardous Materials, 2024, 463: 132848. doi: 10.1016/j.jhazmat.2023.132848
|
[33] |
WANG Y Q, CHEN P P, YU X F, et al. Algae-bacteria symbiotic constructed wetlands for antibiotic wastewater purification and biological response[J]. Frontiers in Microbiology, 2022, 13: 1044009. doi: 10.3389/fmicb.2022.1044009
|
[34] |
WANG Y, GONG X, HUANG D, et al. Increasing oxytetracycline and enrofloxacin concentrations on the algal growth and sewage purification performance of an algal-bacterial consortia system[J]. Chemosphere, 2022, 286(Pt 3): 131917.
|
[35] |
LIU W, MING Y, HUANG Z, et al. Impacts of florfenicol on marine diatom Skeletonema costatum through photosynthesis inhibition and oxidative damages[J]. Plant Physiology and Biochemistry, 2012, 60: 165-170. doi: 10.1016/j.plaphy.2012.08.009
|
[36] |
EIO E J, KAWAI M, NIWA C, et al. Biodegradation of bisphenol A by an algal-bacterial system[J]. Environmental Science and Pollution Research, 2015, 22(19): 15145-15153. doi: 10.1007/s11356-015-4693-2
|
[37] |
STOCKER R, SEYMOUR J R, SAMADANI A, et al. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(11): 4209-4214.
|
[38] |
MENG F, HUANG W, LIU D, et al. Application of aerobic granules-continuous flow reactor for saline wastewater treatment: Granular stability, lipid production and symbiotic relationship between bacteria and algae[J]. Bioresource Technology, 2020, 295: 122291. doi: 10.1016/j.biortech.2019.122291
|
[39] |
TANG J, WU Y H, Esquivel-Elizondo S, et al. How Microbial Aggregates Protect against Nanoparticle Toxicity[J]. Trends in Biotechnology, 2018, 36(11): 1171-1182. doi: 10.1016/j.tibtech.2018.06.009
|
[40] |
CHANG Y, BAI Y, HUO Y, et al. Benzophenone-4 Promotes the Growth of a Pseudomonas sp. and Biogenic Oxidation of Mn(II)[J]. Environmental Science & Technology, 2018, 52(3): 1262-1269.
|
[41] |
ZHANG X, LI S, QI W, et al. Mechanism of oxytetracycline removal by a manganese-oxidizing bacteria Pseudomonas sp. QJX-1[J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4494-4500.
|