[1] |
ZHOU D, CHEN P, WANG C, et al. Intermediate-sized molecular sieving of styrene from larger and smaller analogues[J]. Nature Materials, 2019, 18(9): 994-998. doi: 10.1038/s41563-019-0427-z
|
[2] |
于原浩, 杜琦, 李二强, 等. 酸碱、高温改性13X分子筛及其对苯乙烯的吸附[J]. 环境工程学报, 2019, 13(9): 2198-2208.
|
[3] |
沙昊雷, 寿佳晨, 谢国建, 等. 生物滴滤净化气态苯乙烯的微电解强化实验研究[J]. 环境科学学报, 2016, 36(6): 2216-2222.
|
[4] |
YANG C, MIAO G, PI Y, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153. doi: 10.1016/j.cej.2019.03.232
|
[5] |
TANADA S, BOKI K, TAKAHASHI H, et al. Adsorption of styrene on activated carbon and regeneration of spent activated Carbon[J]. Chemical & Pharmaceutical Bulletin, 1980, 28(12): 3681-3685.
|
[6] |
HOU S, HUANG Z, ZHU T, et al. Adsorption removal of styrene on C-Cl grafted silica gel adsorbents[J]. Chemosphere, 2023, 315: 137679. doi: 10.1016/j.chemosphere.2022.137679
|
[7] |
GAO Z, LIU J, WANG Y, et al. Novel methodologies for addressing regeneration challenges in styrene-saturated activated carbon for styrene removal[J]. Separation and Purification Technology, 2024, 340: 126749. doi: 10.1016/j.seppur.2024.126749
|
[8] |
谷世美, 张连秀, 王喜芹, 等. VOCs治理中的活性炭: 作用、难题及“绿岛”模式[J]. 中国环保产业, 2023(11): 62-68.
|
[9] |
MATUSIK J, KOTEJA A, MAZIARZ P, et al. Styrene removal by surfactant-modified smectite group minerals: Efficiency and factors affecting adsorption/desorption[J]. Chemical Engineering Journal, 2022, 428: 130848. doi: 10.1016/j.cej.2021.130848
|
[10] |
LIANG X, JIANG H, FANG J, et al. Thermal analysis of the styrene bulk polymerization and characterization of polystyrene initiated by two methods[J]. Chemical Engineering Communications, 2019, 206(4): 432-443. doi: 10.1080/00986445.2018.1494586
|
[11] |
HASSAN A, MOUSA M, ABDEL M, et al. Surface and catalytic characteristics of thermally and chemically activated bentonite catalysts used in the polymerization of styrene[J]. Journal of Catalysis, 1978, 53(2): 175-185. doi: 10.1016/0021-9517(78)90065-9
|
[12] |
RAMOS M, VITAL J, SILVA F, et al. Polymerisation of styrene using Y, USY and β zeolites as catalysts[J]. Catalysis Letters, 1998, 51(1): 117-119.
|
[13] |
ALSHARAEH H, IBRAHIM Y M, EL S. Direct evidence for the gas phase thermal polymerization of styrene. Determination of the initiation mechanism and structures of the early oligomers by ion mobility[J]. Journal of the American Chemical Society, 2005, 127(17): 6164-6165. doi: 10.1021/ja042283r
|
[14] |
PéREZ E, VALENCIA S, REY F. Zeolites in adsorption processes: state of the art and future prospects[J]. Chemical Reviews, 2022, 122(24): 17647-17695. doi: 10.1021/acs.chemrev.2c00140
|
[15] |
李明晓, 贾进许, 孙晓艳, 等. 水热处理和硝酸处理对改性Y分子筛性能的影响[J]. 石油化工, 2014, 43(4): 412-419.
|
[16] |
魏民, 孔飞飞, 丁越野, 等. 碱处理法制备微介孔ZSM-5及其加氢脱硫性能的研究[J]. 石油炼制与化工, 2015, 46(10): 61-66.
|
[17] |
李君华, 谢锦印, 张丹, 等. 碱改性ZSM-5分子筛及其甲醇芳构化性能[J]. 燃料化学学报, 2021, 49(3): 338-345.
|
[18] |
王旭, 吴玉帅, 杨欣, 等. 沸石分子筛用于VOCs吸附脱除的应用研究进展[J]. 化工进展, 2021, 40(5): 2813-2826.
|
[19] |
SHEN X, DU X, YANG D, et al. Influence of physical structures and chemical modification on VOCs adsorption characteristics of molecular sieves[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106729. doi: 10.1016/j.jece.2021.106729
|
[20] |
BENGOUGH W I, PARK G B. The thermal polymerization of styrene at temperatures up to 250°[J]. European Polymer Journal, 1978, 14(11): 889-894. doi: 10.1016/0014-3057(78)90086-1
|
[21] |
SUN H, PAN Y, GUAN J, et al. Thermal decomposition behaviors and dust explosion characteristics of nano-polystyrene[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(4): 2359-2366. doi: 10.1007/s10973-018-7329-1
|
[22] |
林华影, 张伟, 张琼, 等. 气相色谱-质谱法分析聚苯乙烯加热分解产物[J]. 中国卫生检验杂志, 2009, 19(9): 1964-1966.
|
[23] |
KIMUKAI H, KODERA Y, KOIZUMI K, et al. Low temperature decomposition of polystyrene[J]. Applied Sciences, 2020, 10(15): 5100. doi: 10.3390/app10155100
|
[24] |
姚露露, 周燕芳, 郭珊珊, 等. Y型与ZSM-5型分子筛吸附VOCs性能的对比[J]. 环境工程学报, 2022, 16(1): 182-189.
|
[25] |
LI J, XIE J, ZHANG D, et al. Effect of alkali modification to ZSM-5 zeolite on the aromatization of methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 339-346. doi: 10.1016/S1872-5813(21)60016-6
|
[26] |
YOSHIMOTO R, HARA K, OKUMURA K, et al. Analysis of toluene adsorption on Na-form zeolite with a temperature-programmed desorption method[J]. The Journal of Physical Chemistry C, 2007, 111(3): 1474-1479. doi: 10.1021/jp065966x
|
[27] |
WANG C, LENG S, GUO H, et al. Quantitative arrangement of Si/Al ratio of natural zeolite using acid treatment[J]. Applied Surface Science, 2019, 498.
|
[28] |
RODRíGUEZ A, LLOPIS J, MARTíNEZ C, et al. Increasing the stability of the Ge-containing extra-large pore ITQ-33 zeolite by post-synthetic acid treatments[J]. Microporous and Mesoporous Materials, 2018, 267: 35-42. doi: 10.1016/j.micromeso.2018.03.006
|
[29] |
何志伟, 袁程远, 杜晓辉, 等. 酸/碱处理对HZSM-5分子筛结构及性能的影响[J]. 石化技术与应用, 2015, 33(2): 103-107.
|
[30] |
SONG Y, FENG Y, LIU F, et al. Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance[J]. Journal of Molecular Catalysis A: Chemical, 2009, 310(1): 130-137.
|
[31] |
BEERDSEN E, SMIT B, CALERO S. The influence of non-framework sodium cations on the adsorption of alkanes in MFI- and MOR-type zeolites[J]. The Journal of Physical Chemistry B, 2002, 106(41): 10659-10667. doi: 10.1021/jp026257w
|
[32] |
CUI Y, LI Z, SU W, et al. Influence of alkaline modification on different adsorption behavior between ZSM-5 and LSX zeolite for toluene[J]. International Journal of Chemical Reactor Engineering, 2020, 18(12): 20200105. doi: 10.1515/ijcre-2020-0105
|
[33] |
DEROUANE G, ANDRE J, LUCAS A. Surface curvature effects in physisorption and catalysis by microporous solids and molecular sieves[J]. Journal of Catalysis, 1988, 110(1): 58-73. doi: 10.1016/0021-9517(88)90297-7
|
[34] |
YUAN J, GAO M, LIU Z, et al. Hyperloop-like diffusion of long-chain molecules under confinement[J]. Nature Communications, 2023, 14(1): 1735. doi: 10.1038/s41467-023-37455-3
|
[35] |
JI Y, LIU Z, ZHAO Z, et al. Untangling framework confinements: A dynamical study on bulky aromatic molecules in MFI Zeolites[J]. ACS Catalysis, 2022, 12(24): 15288-15297. doi: 10.1021/acscatal.2c04646
|
[36] |
VAN M, KRAJNC A, VOORSPOELS S, et al. Highly selective removal of perfluorinated contaminants by adsorption on all‐silica zeolite Beta[J]. Angewandte Chemie International Edition, 2020, 59(33): 14086-14090. doi: 10.1002/anie.202002953
|
[37] |
FU W, YIN C, FENG Y, et al. Synergistic catalysis of the Brönsted acid and highly dispersed Cu on the mesoporous Beta zeolite in the intermolecular aminoazidation of styrene[J]. Applied Catalysis A: General, 2021, 609: 117907. doi: 10.1016/j.apcata.2020.117907
|
[38] |
牛成, 赵洋, 钱程, 等. 碱处理改性ZSM-5分子筛孔结构对VOCs吸附性能的影响[J]. 石油学报(石油加工), 2024, 40(1): 37-45.
|
[39] |
MATIAS P, LOPES J, AYRAULT P, et al. Effect of dealumination by acid treatment of a HMCM-22 zeolite on the acidity and activity of the pore systems[J]. Applied Catalysis A: General, 2009, 365(2): 207-213. doi: 10.1016/j.apcata.2009.06.014
|
[40] |
吕仁庆, 王秋英, 项寿鹤. 碱性水蒸气处理对ZSM-5沸石酸性质及孔结构的影响[J]. 催化学报, 2002(5): 421-424.
|
[41] |
张丹丹, 张晓丹, 刘仁杰, 等. ZSM-35分子筛的合成与有机酸脱铝改性[J]. 化工科技, 2023, 31(5): 1-9.
|
[42] |
ALAJBEG A, ŠTIPAK B. Thermal decomposition of polystyrene foam under controlled atmosphere and temperature conditions[J]. Journal of Analytical and Applied Pyrolysis, 1985, 7(4): 283-306. doi: 10.1016/0165-2370(85)80101-7
|
[43] |
YANG H, MA C, LI Y, et al. Synthesis, characterization and evaluations of the Ag/ZSM-5 for ethylene oxidation at room temperature: Investigating the effect of water and deactivation[J]. Chemical Engineering Journal, 2018, 347: 808-818. doi: 10.1016/j.cej.2018.04.095
|