[1] 攻坚克难回升向好夯基蓄能向新而行——解读《中华人民共和国2023年国民经济和社会发展统计公报》[J]. 记者观察. 2024, 7: 20-21.
[2] 涂佩玥, 杨欢, 陈兰洲, 等. 中国重点城市大气污染与健康风险的时空分布特征[J]. 环境科学. 2023, 44(11): 5954-5963.
[3] ARSLAN V. The application of combined lignite cleaning processes, bacterial leaching and flotation, for reducing higher ash and sulfur contents[J]. International Journal of Coal Preparation and Utilization, 2020, 42: 2114-2126.
[4] MOHAJAN H. Acid Rain is a Local Environment Pollution but Global Concern[J]. Journal Of Analytical Chemistry, 2018, 3: 47-55.
[5] 王纵横. 华能国际营口电厂脱硫项目进度计划与控制研究[D]. 长春: 吉林大学. 2013.
[6] LIU F, QIAO X, ZHOU L, et al. Migration and Fate of Acid Mine Drainage Pollutants in Calcareous Soil[J]. International Journal of Environmental Research and Public Health, 2018, 15: 1759-1773. doi: 10.3390/ijerph15081759
[7] TAO X, XU N, XIE M, TANG L. Progress of the technique of coal microwave desulfurization[J], International Journal of Coal Science & Technology, 2014, 1: 113-128.
[8] 唐跃刚, 贺鑫, 程爱国, 等. 中国煤中硫含量分布特征及其沉积控制[J]. 煤炭学报, 2015, 40: 1977-1988.
[9] 张杰芳, 桑树勋, 王文峰. 贵州高硫煤的微生物浮选脱硫实验研究[J]. 科学技术与工程, 2015, 15: 16-23. doi: 10.3969/j.issn.1671-1815.2015.06.004
[10] 陈俊. 煤浮选脱硫降灰工艺的研究[D]. 合肥: 合肥工业大学. 2022.
[11] 陈文辉, 刘佳, 袁宇东, 等. 采用摇床分级重选复杂高硫煤的试验研究[J]. 煤炭加工与综合利用, 2018, 3: 10-13.
[12] 王建英, 宋晋阳, 吴旭, 等. 细粒煤超导磁选脱硫降灰的试验研究[J]. 中国煤炭, 2018, 44(6): 96-100. doi: 10.3969/j.issn.1006-530X.2018.06.021
[13] PRAYUENYONG P. Coal biodesulphurization processes[J]. Journal of Science Technology, 2002, 24(3): 493-507.
[14] 刘松, 张明旭, 卢旭东. 高硫煤微波辅助脱除有机硫试验研究[J]. 煤炭技术, 2015, 34(5): 308-310.
[15] XU J, LIU X, SONG C, et al. Biodesulfurization of high sulfur coal from Shanxi: Optimization of the desulfurization parameters of three kinds of bacteria[J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2019, 42: 1-19.
[16] EHSANI M. Desulfurization of Tabas Coals Using Chemical Reagents[J]. Iranian Journal of Chemistry & Chemical Engineering, 2006, 25(2): 59-66.
[17] VARGAS M, MORAN A, GOMEZ E, et al. Biodesulphurization of a coal by packed-column leaching. Simultaneous thermogravimetric and mass spectrometric analyses[J]. Fuel, 2006, 85(12-13): 1756-1762. doi: 10.1016/j.fuel.2006.02.014
[18] KOTELNIKOV V, CHYSYMA C. Microorganisms in Coal Desulfurization (Review)[J]. Applied Biochemistry and Microbiology, 2020, 56: 5.
[19] TANG Y, XUE L, GOU M, et al. Study on influencing factors of coal microbial flotation desulfurization[J]. Fuel, 2024, 358: 130115. doi: 10.1016/j.fuel.2023.130115
[20] 刘金艳. 氧化亚铁硫杆菌优化培养及其煤炭生物脱硫的界面作用研究[D]. 徐州: 中国矿业大学. 2010.
[21] CARDONA I, MARQUEZ M. Biodesulfurization of two Colombian coals with native microorganisms[J]. Fuel Processing Technology, 2009, 90: 1099-1106. doi: 10.1016/j.fuproc.2009.04.022
[22] 易欣, 张少航, 葛龙, 等. 好氧微生物抑制煤自燃机理研究现状及展望[J]. 洁净煤技术. 2023, 29: 198-205.
[23] LIU F, LEI Y, SHI J, et al. Effect of microbial nutrients supply on coal bio-desulfurization[J]. Journal of Hazardous Materials, 2020, 384: 121324. doi: 10.1016/j.jhazmat.2019.121324
[24] LIU T, HOU J, PENG Y. Biodesulfurization from the high sulfur coal with a newly isolated native bacterium, Aspergillussp. DP06[J]. Environmental Progress & Sustainable Energy, 2017, 36: 595-599.
[25] LIU H, GU G, XU Y. Surface properties of pyrite in the course of bioleaching by pure culture of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans[J]. Hydrometallurgy, 2011, 108: 143-148. doi: 10.1016/j.hydromet.2011.03.010
[26] BHATTACHARYYA D, HSIEH M, FRANCIS H, et al. Biological desulfurization of coal by mesophilic and thermophilic microorganisms[J]. Resources Conservation & Recycling, 1990, 3: 81-96.
[27] 马蓉, 卢小海, 陈仕陆. 煤中各种形态硫的测定的注意事项[J]. 科技传播, 2014, 6: 87-88.
[28] DONG B, JIA Y, ZHAO H, et al. Evidence of weak interaction between ferric iron and extracellular polymeric substances of Acidithiobacillus ferrooxidans[J]. Hydrometallurgy, 2022, 209: 105817. doi: 10.1016/j.hydromet.2022.105817
[29] YE M, LIANG J, LIAO X, et al. Bioleaching for detoxification of waste flotation tailings: Relationship between EPS substances and bioleaching behavior[J]. Journal of Environmental Management, 2021, 279: 111795. doi: 10.1016/j.jenvman.2020.111795
[30] HIMEL K, MELISSA C, JOSHUA R, et al. Complete genome sequence of Acidihalobacter prosperus strain F5, an extremely acidophilic, iron- and sulfur-oxidizing halophile with potential industrial applicability in saline water bioleaching of chalcopyrite - ScienceDirect[J]. Journal of Biotechnology, 2017, 262: 56-59. doi: 10.1016/j.jbiotec.2017.10.001
[31] BOXALL N, REA S, LI J, et al. Effect of high sulfate concentrations on chalcopyrite bioleaching and molecular characterisation of the bioleaching microbial community[J]. Hydrometallurgy, 2017, 168: S0304386X16304364.
[32] LI X, LIU Y, ZENG G, et al. Direct current stimulation of Thiobacillus ferrooxidans bacterial metabolism in a bioelectrical reactor without cation-specific membrane[J]. Bioresource Technology, 2010, 101: 6035-6038. doi: 10.1016/j.biortech.2010.02.094
[33] 刘奋武, 高诗颖, 王敏, 等. 镁离子对氧化亚铁硫杆菌生物合成次生铁矿物的影响[J]. 中国环境科学, 2014, 34(3): 713-719.
[34] YE J, ZHANG P, ZHANG G, et al. Biodesulfurization of high sulfur fat coal with indigenous and exotic microorganisms[J]. Journal of Cleaner Production, 2018, 197: 562-570. doi: 10.1016/j.jclepro.2018.06.223
[35] 俞宏军, 刘兆瑞, 于保强. 巴基斯坦某铜矿选矿工艺研究[J]. 中国矿山工程, 2023, 52(3): 74-79.
[36] 虞艳云. 胞外聚合物在含铁矿物同微生物界面过程中的作用研究[J]. 合肥: 合肥工业大学. 2014.
[37] LIU F, ZHOU J, ZHOU L, et al. Effect of neutralized solid waste generated in lime neutralization on the ferrous ion bio-oxidation process during acid mine drainage treatment[J]. Journal of Hazardous Materials, 2015, 299: 404-411. doi: 10.1016/j.jhazmat.2015.06.035
[38] PAN Z, LOU Y, YANG G, et al. Preparation of calcium sulfate dihydrate and calcium sulfate hemihydrate with controllable crystal morphology by using ethanol additive[J]. Ceramics International, 2013, 39: 5495-5502. doi: 10.1016/j.ceramint.2012.12.061