[1] |
LI S, ONDON B S, HO S H, et al. Antibiotic resistant bacteria and genes in wastewater treatment plants: From occurrence to treatment strategies[J]. Science of the Total Environment, 2022, 838: 156544. doi: 10.1016/j.scitotenv.2022.156544
|
[2] |
PEI M, ZHANG B, HE Y, et al. State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants[J]. Environment International, 2019, 131: 105026. doi: 10.1016/j.envint.2019.105026
|
[3] |
LAMBA M, GRAHAM D W, AHAMMAD S Z. Hospital wastewater releases of carbapenem-resistance pathogens and genes in urban India[J]. Environmental Science & Technology, 2017, 51(23): 13906-13912.
|
[4] |
MANAIA C M, ROCHA J, SCACCIA N, et al. Antibiotic resistance in wastewater treatment plants: tackling the black box[J]. Environment International, 2018, 115: 312-324. doi: 10.1016/j.envint.2018.03.044
|
[5] |
CASSINI A, HÖGBERG L D, PLACHOURAS D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis[J]. The Lancet Infectious Diseases, 2019, 19(1): 56-66. doi: 10.1016/S1473-3099(18)30605-4
|
[6] |
ALLEN H, DONATO J, WANG H, et al. Call of the wild: antibiotic resistance genes in natural environments[J]. Nature reviews. Microbiology, 2010, 8: 251-259. doi: 10.1038/nrmicro2312
|
[7] |
YU W, ZHAN S, SHEN Z, et al. Efficient removal mechanism for antibiotic resistance genes from aquatic environments by graphene oxide nanosheet[J]. Chemical Engineering Journal, 2017, 313: 836-846. doi: 10.1016/j.cej.2016.10.107
|
[8] |
MANOHARAN R K, ISHAQUE F, AHN Y H. Fate of antibiotic resistant genes in wastewater environments and treatment strategies: A review[J]. Chemosphere, 2022, 298: 134671. doi: 10.1016/j.chemosphere.2022.134671
|
[9] |
JIA S, SHI P, HU Q, et al. Bacterial community shift drives antibiotic resistance promotion during drinking water chlorination[J]. Environmental Science & Technology, 2015, 49(20): 12271-12279.
|
[10] |
ALEXANDER J, KNOPP G, DÖTSCH A, et al. Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts[J]. Science of the Total Environment, 2016, 559: 103-112. doi: 10.1016/j.scitotenv.2016.03.154
|
[11] |
HILLER C X, HÜBNER U, FAJNOROVA S, et al. Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review[J]. Science of the Total Environment, 2019, 685: 596-608. doi: 10.1016/j.scitotenv.2019.05.315
|
[12] |
ALEX T. CHOW, ANTHONY T. O'GEEN, RANDY A, et al. Reactivity of litter leachates from California oak woodlands in the formation of disinfection by-products[J] Journal of Environmental Quality, 2011, 40(5): 1607-1616.
|
[13] |
WANG K, ZHAO K, QIN X, et al. Treatment of organic wastewater by a synergic electrocatalysis process with Ti3+self-doped TiO2 nanotube arrays electrode as both cathode and anode[J]. Journal of Hazardous Materials, 2022, 424: 127747. doi: 10.1016/j.jhazmat.2021.127747
|
[14] |
WANG T, CHEN H, YU C, et al. Rapid determination of the electroporation threshold for bacteria inactivation using a lab-on-a-chip platform[J]. Environment International, 2019, 132: 105040. doi: 10.1016/j.envint.2019.105040
|
[15] |
ZHU Y, ZHAO C, LIANG J, et al. Rapid removal of diclofenac in aqueous solution by soluble Mn(III) (aq) generated in a novel Electro-activated carbon fiber-permanganate (E-ACF-PM) process[J]. Water Research, 2019, 165: 114975. doi: 10.1016/j.watres.2019.114975
|
[16] |
XU Q, FU Q, LIU X, et al. Mechanisms of potassium permanganate pretreatment improving anaerobic fermentation performance of waste activated sludge[J]. Chemical Engineering Journal, 2021, 406: 126797. doi: 10.1016/j.cej.2020.126797
|
[17] |
CHEN M, LEI Q, REN L, et al. Efficacy of electrochemical membrane bioreactor for virus removal from wastewater: Performance and mechanisms[J]. Bioresource Technology, 2021, 330: 124946. doi: 10.1016/j.biortech.2021.124946
|
[18] |
LIU Y, LEE J H D, XIA Q, et al. A graphene-based electrochemical filter for water purification[J]. Journal of Materials Chemistry A, 2014, 2(39): 16554-16562. doi: 10.1039/C4TA04006F
|
[19] |
LIU H, NI X Y, HUO Z Y, et al. Carbon fiber-based flow-through electrode system (FES) for water disinfection via direct oxidation mechanism with a sequential reduction–oxidation process[J]. Environmental Science & Technology, 2019, 53(6): 3238-3249.
|
[20] |
YANG C, WEN L, LI Y, et al. Fabrication of SnO2-Sb reactive membrane electrodes for high-efficiency electrochemical inactivation of bacteria and viruses in water[J]. Chemical Engineering Journal, 2022, 446: 137327. doi: 10.1016/j.cej.2022.137327
|
[21] |
辛蕾, 霍正洋, 倪欣业等. 过滤式碳纤维电极消毒效果比较与机理研究[J]. 环境科学学报, 2018, 38(3): 940-946.
|
[22] |
GUO L, JING Y, CHAPLIN B P. Development and characterization of ultrafiltration TiO2 Magnéli phase reactive electrochemical membranes[J]. Environmental Science & Technology, 2016, 50(3): 1428-1436.
|
[23] |
HU Y, ZHANG T, JIANG L, et al. Removal of sulfonamide antibiotic resistant bacterial and intracellular antibiotic resistance genes by UVC-activated peroxymonosulfate[J]. Chemical Engineering Journal, 2019, 368: 888-895. doi: 10.1016/j.cej.2019.02.207
|
[24] |
YAO S, HU Y, YE J, et al. Disinfection and mechanism of super-resistant Acinetobacter sp. and the plasmid-encoded antibiotic resistance gene blaNDM-1 by UV/peroxymonosulfate[J]. Chemical Engineering Journal, 2022, 433: 133565. doi: 10.1016/j.cej.2021.133565
|
[25] |
HERRAIZ-CARBONÉ M, COTILLAS S, LACASA E, et al. A review on disinfection technologies for controlling the antibiotic resistance spread[J]. Science of the Total Environment, 2021, 797: 149150. doi: 10.1016/j.scitotenv.2021.149150
|
[26] |
WANG W, WANG H, LI G, et al. Catalyst-free activation of persulfate by visible light for water disinfection: Efficiency and mechanisms[J]. Water Research, 2019, 157: 106-118. doi: 10.1016/j.watres.2019.03.071
|
[27] |
YAO M C, ZHANG X, HUANG Q, et al. Chlorine oxide radical (ClO ) enables the enhanced degradation of antibiotic resistance genes during UV/chlorine treatment by selectively inducing base damage[J]. Environment International, 2023, 178: 108121. doi: 10.1016/j.envint.2023.108121
|
[28] |
ZHU Y, WANG X, ZHANG J, et al. Generation of Active Mn(III) aq by a novel heterogeneous electro-permanganate process with manganese(II) as promoter and stabilizer[J]. Environmental Science & Technology, 2019, 53(15): 9063-9072.
|
[29] |
SONG H, YAN L, MA J, et al. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors[J]. Water Research, 2017, 116: 182-193. doi: 10.1016/j.watres.2017.03.035
|
[30] |
LIU Z, ZHAO C, WANG P, et al. Removal of carbamazepine in water by electro-activated carbon fiber-peroxydisulfate: Comparison, optimization, recycle, and mechanism study[J]. Chemical Engineering Journal, 2018, 343: 28-36. doi: 10.1016/j.cej.2018.02.114
|
[31] |
WANG Z, XIONG W, TEBO B M, et al. Oxidative UO2 dissolution induced by soluble Mn(III)[J]. Environmental Science & Technology, 2014, 48(1): 289-298.
|
[32] |
ZHANG L, JIN H, MA H, et al. Oxidative damage of antibiotic resistant E. coli and gene in a novel sulfidated micron zero-valent activated persulfate system[J]. Chemical Engineering Journal, 2020, 381: 122787. doi: 10.1016/j.cej.2019.122787
|
[33] |
PIGEOT-RÉMY S, SIMONET F, ATLAN D, et al. Bactericidal efficiency and mode of action: A comparative study of photochemistry and photocatalysis[J]. Water Research, 2012, 46(10): 3208-3218. doi: 10.1016/j.watres.2012.03.019
|
[34] |
YAN Y, ZHOU X, YU P, et al. Characteristics, mechanisms and bacteria behavior of photocatalysis with a solid Z-scheme Ag/AgBr/g-C3N4 nanosheet in water disinfection[J]. Applied Catalysis A: General, 2020, 590: 117282. doi: 10.1016/j.apcata.2019.117282
|
[35] |
OSIMANI A, GAROFALO C, CLEMENTI F, et al. Bioluminescence ATP monitoring for the routine assessment of food contact surface cleanliness in a university canteen[J]. International Journal of Environmental Research and Public Health, 2014, 11(10): 10824-10837. doi: 10.3390/ijerph111010824
|
[36] |
RATHINAVELU S, DIVYAPRIYA G, JOSEPH A, et al. Inactivation behavior and intracellular changes in Escherichia coli during electro-oxidation process using Ti/Sb–SnO2/PbO2 anode: Elucidation of the disinfection mechanism[J]. Environmental Research, 2022, 210: 112749. doi: 10.1016/j.envres.2022.112749
|
[37] |
SONG Y, ZHAO C, WANG T, et al. Simultaneously promoted reactive manganese species and hydroxyl radical generation by electro-permanganate with low additive ozone[J]. Water Research, 2021, 189: 116623. doi: 10.1016/j.watres.2020.116623
|
[38] |
KLEWICKI J K, MORGAN J J. Kinetic behavior of Mn(III) complexes of pyrophosphate, EDTA, and citrate[J]. Environmental Science & Technology, 1998, 32(19): 2916-2922.
|
[39] |
PANIZZA M, CERISOLA G. Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent[J]. Water Research, 2001, 35(16): 3987-3992. doi: 10.1016/S0043-1354(01)00135-X
|
[40] |
张妮, 任松宇, 张燕羽, 等. 缓释铁源耦合气体扩散电极强化电芬顿降解环丙沙星[J]. 环境工程学报, 2022, 16(11): 3596-3605. doi: 10.12030/j.cjee.202208056
|
[41] |
JIANG J, PANG S Y, MA J. Role of Ligands in permanganate oxidation of organics[J]. Environmental Science & Technology, 2010, 44(11): 4270-4275.
|
[42] |
ZHANG C, TIAN S, QIN F, et al. Catalyst-free activation of permanganate under visible light irradiation for sulfamethazine degradation: Experiments and theoretical calculation[J]. Water Research, 2021, 194: 116915. doi: 10.1016/j.watres.2021.116915
|
[43] |
YUAN Y, WANG W, NIE M, et al. Visible light-mediated activation of periodate for bisphenol A degradation in the presence of Fe3+ and gallic acid at neutral pH[J]. Chemical Engineering Journal, 2024, 479: 147541. doi: 10.1016/j.cej.2023.147541
|
[44] |
国家环境保护总局, 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国国家标准: 城镇污水处理厂污染物排放标: GB 18918-2002[S] 北京: 中国环境科学出版社, 2002.
|
[45] |
KOURDALI S, BADIS A, BOUCHERIT A, et al. Electrochemical disinfection of bacterial contamination: Effectiveness and modeling study of E. coli inactivation by electro-Fenton, electro-peroxi-coagulation and electrocoagulation[J]. Journal of Environmental Management, 2018, 226: 106-119.
|
[46] |
RUBIO-CLEMENTE A, CHICA E, PEÑUELA G. Total coliform inactivation in natural water by UV/H2O2, UV/US, and UV/US/H2O2 systems[J]. Environmental Science and Pollution Research, 2019, 26(5): 4462-4473. doi: 10.1007/s11356-018-3297-z
|