[1] BATAILLARD P, CAMBIER P, PICOT C. Short-term transformations of lead and cadmium compounds in soil after contamination[J]. European Journal of Soil Science, 2010, 54(2): 365-376.
[2] 左丹丹, 黄金文, 闻高志, 等. 庐江废弃明矾石矿土壤重金属形态特征及生态危害评价[J]. 生态科学, 2019, 38(5): 86-91.
[3] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
[4] DERAKHSHAN N Z, JUNG M C, KIM K H. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology[J]. Environmental Geochemistry and Health, 2018, 40(3): 927-953. doi: 10.1007/s10653-017-9964-z
[5] ABDOLLAHI H, MALEKI S, SAYAHI H, et al. Superadsorbent Fe3O4-coated carbon black nanocomposite for separation of light rare earth elements from aqueous solution: GMDH-based Neural Network and sensitivity analysis[J]. Journal of Hazardous Materials. 2021, 416, 125655.
[6] 吴潜. 磁性纳米材料研究进展及展望[J]. 化学工业, 2017, 35(6): 19-22. doi: 10.3969/j.issn.1673-9647.2017.06.005
[7] LIU Z G, LEI M, ZENG W, et al. Synthesis of magnetic Fe3O4@SiO2-(-NH2/-COOH) nanoparticles and their application for the removal of heavy metals from wastewater[J]. Ceramics International, 2023, 49(12): 20470-20479. doi: 10.1016/j.ceramint.2023.03.177
[8] RAHMI, JULINAWATI, MARLIA N, et al. Preparation and characterization of new magnetic chitosan-glycine-PEGDE (Fe3O4/Ch-G-P) beads for aqueous Cd(II) removal[J], Journal of Water Process Engineering, 2022, 45: 102493.
[9] 方丹丹, 张立志, 王强. 超顺磁性纳米材料对镉污染稻田土壤微生物和酶的影响[J]. 环境科学, 2021, 42(3): 1523-1534.
[10] 聂新星, 刘骏龙, 欧阳光明, 等. 一种磁性固体螯合材料对农田土壤Cd的移除修复效果研究[J]. 农业资源与环境学报, 2017, 34(6): 25-530.
[11] 范力仁, 宋吉青, 周洋, 等. 磁性固体螯合剂(MSC-IDA)对土壤镉污染的移除净化[J]. 环境化学, 2017, 36(6): 1204-1212. doi: 10.7524/j.issn.0254-6108.2017.06.2016122202
[12] 尹带霞. 生物炭对稻田土壤重金属生物有效性的影响与作用机制[D]. 长沙: 湖南师范大学, 2016.
[13] TESSIER A, CAMPBELL P G, BISSON M. Sequential extraction procedure for speciation of particulate trace metals[J]. Analytical Chemistry. 1979, 51: 844-851.
[14] DU C, ZHANG Z, YU G, et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis[J]. Chemosphere, 2021, 272: 129501. doi: 10.1016/j.chemosphere.2020.129501
[15] MULDER J, STEIN A. The solubility of aluminum in acidic forest soils: long-term changes due to acid deposition[J]. Geochimica Et Cosmochimica Acta, 1994, 58(1): 85-94. doi: 10.1016/0016-7037(94)90448-0
[16] 林青, 徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008, 40(5): 706-711. doi: 10.3321/j.issn:0253-9829.2008.05.005
[17] 王玉军, 周东美, 孙瑞娟, 等. 土壤中铜、铅离子的竞争吸附动力学[J]. 中国环境科学, 2006, 26(5): 555-559. doi: 10.3321/j.issn:1000-6923.2006.05.011
[18] SAHA U K, TANIGUCHI S, SAKURAI K. Simultaneous adsorption of cadmium, zinc, and lead on hydroxyalumium-and hydroxyaluminosilicate-montmorillonite complexes[J]. Soil Science Society of America Journal, 2002, 66: 117-128.
[19] LIU G L, LIANG D, ZHONG M Q, et al. Organic adsorbents modified with citric acid and Fe3O4 enhance the removal of Cd and Pb in contaminated solutions[J]. Chemical engineering journal, 2020, 395(1): 125108.
[20] BENETTAYEB A, GUIBAL E, MORSLI A, et al. Chemical modification of alginate for enhanced sorption of Cd(II), Cu(II) and Pb(II)[J]. Chemical Engineering Journal, 2017, 316: 704-714. doi: 10.1016/j.cej.2017.01.131
[21] WANG D Y, EVELIINA R, HE F S, et al. Dual functional sites strategies toward enhanced heavy metal remediation: Interlayer expanded Mg-Al layered double hydroxide by intercalation with L-cysteine[J]. Journal of Hazardous Materials, 2022, 439: 129693. doi: 10.1016/j.jhazmat.2022.129693
[22] KALWAR, NAFADY, SOOMRO, et al. Microwave-assisted synthesis of L-cysteine-capped nickel nanoparticles for catalytic reduction of 4-nitrophenol[J], Rare Metals, 2015, 34: 683-691.
[23] JAWAD A, WANG H B, JEROSHA I, et al. Efficient, stable and selective adsorption of heavy metals by thio-functionalized layered double hydroxide in diverse types of water[J]. Chemical Engineering Journal, 2018, 332: 387-397. doi: 10.1016/j.cej.2017.09.080
[24] 何恬叶. 稳定化纳米零价铁生物炭对水中重金属的吸附[D]. 成都: 成都理工大学, 2023.
[25] GAO Y S, QI G S, YAN W C, et al. Preparation of L-cysteine modified MnFe2O4 nanoparticles based on high-gravity technology and application for the removal of lead[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 2213-3437.
[26] ZHAO M, HUANG Z, WANG S, et al. Design of l-cysteine functionalized UiO-66 MOFs for selective adsorption of Hg(II) in aqueous medium[J]. ACS applied materials & interfaces, 2019, 11(50): 46973-46983.
[27] LI J, XIE L, GUO R, et al. Facile preparation of Fe3O4/MoS4 for ultra fast and highly selective uptake towards Hg2+, Pb2+ and Ag+[J]. Journal of Alloys and Compounds, 2020, 823: 153819. doi: 10.1016/j.jallcom.2020.153819
[28] LEI T, LI S J, JIANG F, et al. Adsorption of cadmium ions from an aqueous solution on a highly stable dopamine-modified magnetic nano-adsorbent[J]. Nanoscale Research Letters, 2019, 14(1): 352. doi: 10.1186/s11671-019-3154-0
[29] CHOWDHURY S R, YANFUL E K, PRATT A R. Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles[J]. Journal of Hazardous Materials, 2012, 235-236: 246-256. doi: 10.1016/j.jhazmat.2012.07.054
[30] 刘孟清. 蒙脱石/高岭土负载硫修饰铁磁纳米复合材料的制备及其对镉的吸附研究[D]. 绵阳: 西南科技大学, 2022.
[31] YUAN G Q, LI K Z, ZHANG J Z, et al. A novel insight into the microwave induced catalytic reduction mechanism in aqueous Cr(VI) removal over ZnFe2O4 catalyst[J]. Journal of Hazardous Materials, 2023, 443: 130211. doi: 10.1016/j.jhazmat.2022.130211
[32] SUN Y, LOU Z M, YU J B, et al. Immobilization of mercury(Ⅱ) from aqueous solution using Al2O3-supported nanoscale FeS[J]. Chemical Engineering Journal, 2017, 323: 438-491.