[1] HUANG X, YANG X M, ZHU J, et al. Microbial interspecific interaction and nitrogen metabolism pathway for the treatment of municipal wastewater by iron carbon based constructed wetland[J]. Bioresource Technology, 2020, 315: 123814. doi: 10.1016/j.biortech.2020.123814
[2] HUA W, HU W, CHEN Q, et al. Identification of microbial consortia for sustainable disposal of constructed wetland reed litter wastes[J]. Environmental Science and Pollution Research, 2023, 30(20): 58019-58029. doi: 10.1007/s11356-023-26649-3
[3] WANG T, XIAO L P, LU H B, et al. Nitrogen removal from summer to winter in a field pilot-scale multistage constructed wetland-pond system[J]. Journal of Environmental Sciences, 2022, 111: 249-262. doi: 10.1016/j.jes.2021.03.028
[4] ZHU B Y, YUAN R F, WANG S N, et al. Iron-based materials for nitrogen and phosphorus removal from wastewater: A review[J]. Journal of Water Process Engineering, 2024, 59: 104952. doi: 10.1016/j.jwpe.2024.104952
[5] PENG S, KONG Q, DENG S H, et al. Application potential of simultaneous nitrification/Fe0-supported autotrophic denitrification (SNAD) based on iron-scraps and micro-electrolysis[J]. Science of the Total Environment, 2020, 711: 135087. doi: 10.1016/j.scitotenv.2019.135087
[6] JIA L, LIU H, KONG Q, et al. Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater[J]. Water Research, 2020, 169: 115285. doi: 10.1016/j.watres.2019.115285
[7] WAN Q, LI X Y, WANG F, et al. Study on the transformation of nitrate nitrogen by manganese-catalyzed iron–carbon micro-electrolysis and microbial coupling[J]. RSC Advances, 2024, 14(16): 10905-10919. doi: 10.1039/D4RA00377B
[8] CUI X, ZHANG M O, DING Y J, et al. Enhanced nitrogen removal via iron-carbon micro-electrolysis in surface flow constructed wetlands: Selecting activated carbon or biochar[J]? Science of the Total Environment, 2022, 815: 152800.
[9] 王文荟, 季闻翔, 赵杰, 等. 铁碳微电解基质在人工湿地中的作用机理及研究现状[J]. 环境化学, 2023, 42(4): 1196-1208. doi: 10.7524/j.issn.0254-6108.2022102201
[10] 赵仲婧, 郝庆菊, 涂婷婷, 等. 铁碳微电解填料对人工湿地温室气体排放的影响[J]. 环境科学, 2021, 42(7): 3482-3493.
[11] ZHENG X Y, JIN M Q, ZHOU X, et al. Enhanced removal mechanism of iron carbon micro-electrolysis constructed wetland on C, N, and P in salty permitted effluent of wastewater treatment plant[J]. Science of the Total Environment, 2019, 649: 21-30. doi: 10.1016/j.scitotenv.2018.08.195
[12] YANG C, ZHANG X L, TANG Y Q, et al. Selection and optimization of the substrate in constructed wetland: A review[J]. Journal of Water Process Engineering, 2022, 49: 103140. doi: 10.1016/j.jwpe.2022.103140
[13] OFIERA L M, BOSE P, KAZNER C. Removal of heavy metals and bulk organics towards application in modified constructed wetlands using activated carbon and zeolites[J]. Water, 2024, 16(3): 511. doi: 10.3390/w16030511
[14] LIU X T, LI X H, ZHANG X L, et al. Research on the purification effect of major pollutants in water by modular constructed wetlands with different filler combinations[J]. Water Science & Technology, 2024, 89(8): 2090-2104.
[15] ZHANG Y R, XU J M, XU H R, et al. Insights into the response of nitrogen metabolism to sulfamethoxazole contamination in constructed wetlands with varied substrates[J]. Bioresource Technology, 2024, 397: 130482. doi: 10.1016/j.biortech.2024.130482
[16] 韩东旭, 刘相汝, 韩齐恒, 等. 铁碳微电解串联天然沸石去除黑臭水体中的总氮[J]. 东北师大学报(自然科学版), 2024, 56(1): 154-160.
[17] MCCARTY P L. What is the best biological process for nitrogen removal: when and why[J]? Environmental Science and Technology, 2018, 52(7): 3835-3841.
[18] WANG X O, TIAN Y M, ZHAO X H, et al. Effects of aeration position on organics, nitrogen and phosphorus removal in combined oxidation pond-constructed wetland systems[J]. Bioresource Technology, 2015, 198: 7-15. doi: 10.1016/j.biortech.2015.08.150
[19] 邵婷婷, 丁仁伟, 纪荣平. 曝气人工湿地深度处理污水处理厂尾水中四环素的研究[J]. 水处理技术, 2023, 49(9): 137-141.
[20] 陈鑫童, 郝庆菊, 熊艳芳, 等. 铁矿石和生物炭添加对潜流人工湿地污水处理效果和温室气体排放及微生物群落的影响[J]. 环境科学, 2022, 43(3): 1492-1499.
[21] DONG C, LI M T, ZHUANG L L, et al. The improvement of pollutant removal in the ferric-carbon micro-electrolysis constructed wetland by partial aeration[J]. Water, 2020, 12(2): 389. doi: 10.3390/w12020389
[22] 英河. 生活污水中氮、磷、COD污染的植物修复研究[D]. 北京: 中国地质大学, 2019.
[23] YAN Z C, XIE S L, YANG M X. Effect and mechanism of iron-carbon micro-electrolysis pretreatment of organic peroxide production wastewater[J]. Environmental Science and Pollution Research, 2024, 31(8): 11886-11897. doi: 10.1007/s11356-023-31057-8
[24] HUANG C, PENG F, GUO H J, et al. Efficient COD degradation of turpentine processing wastewater by combination of Fe-C micro-electrolysis and Fenton treatment: Long-term study and scale up[J]. Chemical Engineering Journal, 2018, 351: 697-707. doi: 10.1016/j.cej.2018.06.139
[25] 全爽, 刘健, 张鹏飞, 等. 三种组合基质垂直潜流人工湿地对微污染河水的净化效果[J]. 环境化学, 2024, 43(11): 1-9.
[26] SHUAI W T, JAFFE P R. Anaerobic ammonium oxidation coupled to iron reduction in constructed wetland mesocosms[J]. Science of the Total Environment, 2019, 648: 984-992. doi: 10.1016/j.scitotenv.2018.08.189
[27] XIE Y X, WAN A J, WANG X M, et al. An iron-carbon-activated carbon and zeolite composite filter, anaerobic-aerobic integrated denitrification device for nitrogen removal in low C/N ratio sewage[J]. Water Science and Technology, 2019, 80(2): 223-231. doi: 10.2166/wst.2019.261
[28] XIE Y K, DONG H R, ZENG G M, et al. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review[J]. Journal of Hazardous Materials, 2017, 321: 390-407. doi: 10.1016/j.jhazmat.2016.09.028
[29] 凌慧兰, 高柏, 许丹, 等. 不同基质人工湿地处理含氨氮地下水过程中氮素形态转化的时空特征[J]. 环境污染与防治, 2022, 44(3): 324-329.
[30] 王玉荣, 周志高, 丁昌峰, 等. 钠化沸石去除稀土矿区废水中氨氮性能及机制研究[J]. 生态与农村环境学报, 2023, 39(6): 795-802.
[31] WU Z X, FANG Y C, ZHOU J J, et al. Succinic acid-assisted modification of a natural zeolite and preparation of its porous pellet for enhanced removal of ammonium in wastewater via fixed-bed continuous flow column[J]. Journal of Water Process Engineering, 2022, 48: 102906. doi: 10.1016/j.jwpe.2022.102906
[32] SHAO X X, ZHAO L L, SHENG X C, et al. Effects of influent salinity on water purification and greenhouse gas emissions in lab-scale constructed wetlands[J]. Environmental Science and Pollution Research, 2020, 27(17): 21487-21496. doi: 10.1007/s11356-020-08497-7
[33] GU X S, CHEN D Y, WU F, et al. Function of aquatic plants on nitrogen removal and greenhouse gas emission in enhanced denitrification constructed wetlands: Iris pseudacorus for example[J]. Journal of Cleaner Production, 2022, 330: 129842. doi: 10.1016/j.jclepro.2021.129842
[34] BONETTI G, TREVATHAN-TACKETT S M, HEBERT N, et al. Microbial community dynamics behind major release of methane in constructed wetlands[J]. Applied Soil Ecology, 2021, 167: 104163. doi: 10.1016/j.apsoil.2021.104163
[35] PANG J L, YANG M, TONG D L, et al. Does influent C/N ratio affect pollutant removal and greenhouse gas emission in wastewater ecological soil infiltration systems with/without intermittent aeration[J]? Water Science and Technology, 2020, 81(4): 668-678.
[36] 陈欣, 祝惠, 阎百兴, 等. 铁碳微电解基质强化人工湿地污染物去除率的室内模拟实验[J]. 湿地科学, 2018, 16(5): 684-689.
[37] HE R, BODELIER P L E, JIA Z J, et al. Metabolic flexibility of microbial methane oxidation[J]. Frontiers in Microbiology, 2022, 13: 1079906. doi: 10.3389/fmicb.2022.1079906
[38] WANG H X, XU J L, SHENG L X. Purification mechanism of sewage from constructed wetlands with zeolite substrates: A review[J]. Journal of Cleaner Production, 2020, 258: 120760. doi: 10.1016/j.jclepro.2020.120760
[39] WANG Y T, CAI Z Q, SHENG S, et al. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands[J]. Science of the Total Environment, 2020, 701: 134736. doi: 10.1016/j.scitotenv.2019.134736
[40] ZHOU S, WANG C, LIU C, et al. Nutrient removal, methane and nitrous oxide emissions in a hybrid constructed wetland treating anaerobic digestate[J]. Science of the Total Environment, 2020, 733: 138338. doi: 10.1016/j.scitotenv.2020.138338
[41] ZHAO Z J, HAO Q J, MA R Z, et al. Ferric-carbon micro-electrolysis and zeolite reduce CH4 and N2O emissions from the aerated constructed wetland[J]. Journal of Cleaner Production, 2022, 342: 130946. doi: 10.1016/j.jclepro.2022.130946
[42] ZHANG K, WU X L, WANG W, et al. Anaerobic oxidation of methane (AOM) driven by multiple electron acceptors in constructed wetland and the related mechanisms of carbon, nitrogen, sulfur cycles[J]. Chemical Engineering Journal, 2022, 433: 133663. doi: 10.1016/j.cej.2021.133663
[43] 张鑫, 李承卓, 马丹竹, 等. 活性炭吸附甲烷的影响因素研究[J]. 辽宁化工, 2022, 51(11): 1609-1613+1617. doi: 10.3969/j.issn.1004-0935.2022.11.030
[44] GUO X, ZHANG P H, NAVROTSKY A. The thermodynamics of gas absorption and guest-induced flexibility in zeolite Y[J]. Microporous and Mesoporous Materials, 2020, 294: 109893. doi: 10.1016/j.micromeso.2019.109893
[45] 严程, 梅娟, 赵由才. 好氧甲烷氧化菌及其工程应用进展[J]. 生物工程学报, 2022, 38(4): 1322-1338.
[46] MAUCIERI C, BARBERA A C, VYMAZAL J, et al. A review on the main affecting factors of greenhouse gases emission in constructed wetlands[J]. Agricultural and Forest Meteorology, 2017, 236: 175-193. doi: 10.1016/j.agrformet.2017.01.006
[47] LAI X S, ZHAO Y Q, PAN F X, et al. Enhanced optimal removal of nitrogen and organics from intermittently aerated vertical flow constructed wetlands: relative COD/N ratios and microbial responses[J]. Chemosphere, 2020, 244: 125556. doi: 10.1016/j.chemosphere.2019.125556
[48] HUANG L, GAO X, GUO J, et al. A review on the mechanism and affecting factors of nitrous oxide emission in constructed wetlands[J]. Environmental Earth Sciences, 2013, 68(8): 2171-2180. doi: 10.1007/s12665-012-1900-z
[49] LI P Z, PENG Y Z, WANG S Y, et al. N2O emission from partial nitrification and full nitrification in domestic wastewater treatment process[J]. Water, 2022, 14(20): 3195. doi: 10.3390/w14203195
[50] 刘国华, 庞毓旻, 齐鲁, 等. SBR工艺污水生物脱氮过程中N2O的释放特征[J]. 环境工程, 2020, 38(7): 51-57.
[51] HUO J Y, HU X J, CHENG S Y, et al. Effects and mechanisms of constructed wetlands with different substrates on N2O emission in wastewater treatment[J]. Environmental Science and Pollution Research, 2022, 29(13): 19045-19053. doi: 10.1007/s11356-021-17219-6
[52] LI P Z, WANG S Y, PENG Y Z, et al. The synergistic effects of dissolved oxygen and pH on N2O production in biological domestic wastewater treatment under nitrifying conditions[J]. Environmental Technology, 2015, 36(13): 1623-1631. doi: 10.1080/09593330.2014.1002862
[53] WUNDERLIN P, MOHN J, JOSS A, et al. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions[J]. Water Research, 2012, 46(4): 1027-1037. doi: 10.1016/j.watres.2011.11.080
[54] DENG S H, LI D S, YANG X, et al. Novel characteristics on micro-electrolysis mediated Fe(0)-oxidizing autotrophic denitrification with aeration: Efficiency, iron-compounds transformation, N2O and NO2 accumulation, and microbial characteristics[J]. Chemical Engineering Journal, 2020, 387: 123409. doi: 10.1016/j.cej.2019.123409
[55] ZHANG G S, HAO Q J, MA R Z, et al. Biochar and hematite amendments suppress emission of CH4 and N2O in constructed wetlands[J]. Science of the Total Environment, 2023, 874: 162451. doi: 10.1016/j.scitotenv.2023.162451
[56] LI X Z, ZHOU L L, ZHUANG L L, et al. High-efficient nitrogen and phosphorus removal and its mechanism in a partially unsaturated constructed wetland with Fe-C micro-electrolysis substrate[J]. Chemical Engineering Journal, 2022, 431: 133252. doi: 10.1016/j.cej.2021.133252
[57] 鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9): 1801-1820.
[58] LIU Y S, FENG L, LIU Y Z, et al. A novel constructed wetland based on iron carbon substrates: performance optimization and mechanisms of simultaneous removal of nitrogen and phosphorus[J]. Environmental Science and Pollution Research, 2022, 30(9): 23035-23046. doi: 10.1007/s11356-022-23754-7
[59] 冉小川. 外源硝酸盐对好氧颗粒污泥造粒及微生物群落结构演替的影响[D]. 重庆: 重庆大学, 2020.
[60] ZHENG M Q, WANG Z M, HE C H, et al. Hybrid biofilm system based on corncob coupling with scrap iron for synergistic nitrogen removal and phosphorus recovery in low-carbon source wastewater[J]. Journal of Water Process Engineering, 2023, 54: 104006. doi: 10.1016/j.jwpe.2023.104006