[1] |
ZHANG W, LIU M, LI C. Soil heavy metal contamination assessment in the Hun-Taizi Rivewatershed, China[J]. Scientific Reports, 2020, 10(1): 8730. doi: 10.1038/s41598-020-65809-0
|
[2] |
KHAN S, NAUSHAD M, LIMA E C, et al. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies–A review[J]. Journal of Hazardous Materials, 2021, 417: 126039. doi: 10.1016/j.jhazmat.2021.126039
|
[3] |
PETROV D, TUNEGA D, GERZABEK M H, et al. Molecular dynamics simulations of the standard Leonardite humic acid: Microscopic analysis of the structure and dynamics[J]. Environmental Science & Technology, 2017, 51(10): 5414-5124.
|
[4] |
FEDOTOV G N, SHOBA S A. On the nature of humic substances[J]. Eurasian Soil Science, 2015, 48: 1292-1299. doi: 10.1134/S1064229315120066
|
[5] |
杨会国, 马丽萍, 张彦彬, 等. 腐殖酸接枝共聚物的研究进展及应用前景[J/OL]. 应用化工, [2024-03-28]. https://doi.org/10.16581/j.cnki.issn1671-3206.20240227.005.
|
[6] |
GUO X, LIU H, WU S. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions[J]. Science of the Total Environment, 2019, 662: 501-510. doi: 10.1016/j.scitotenv.2019.01.137
|
[7] |
SHAO Y, LI Z, LONG Y, et al. Direct humification of biowaste with hydrothermal technology: A review[J]. Science of the Total Environment, 2023: 168232.
|
[8] |
ZHOU X, LI J, ZHANG J, et al. Bioaugmentation mechanism on humic acid formation during composting of food waste[J]. Science of the Total Environment, 2022, 830: 154783. doi: 10.1016/j.scitotenv.2022.154783
|
[9] |
ZHANG Z, ZHAO Y, YANG T, et al. Effects of exogenous protein-like precursors on humification process during lignocellulose-like biomass composting: Amino acids as the key linker to promote humification process[J]. Bioresource Technology, 2019, 291: 121882. doi: 10.1016/j.biortech.2019.121882
|
[10] |
QI H, WEI Z, ZHANG J, et al. Effect of MnO2 on biotic and abiotic pathways of humic-like substance formation during composting of different raw materials[J]. Waste Management, 2019, 87: 326-334. doi: 10.1016/j.wasman.2019.02.022
|
[11] |
QI H, ZHAO Y, ZHAO X, et al. Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments: It is meaningful carbon sequestration[J]. Bioresource Technology, 2020, 299: 122596. doi: 10.1016/j.biortech.2019.122596
|
[12] |
YU H, LI P, BO G, et al. Studies on the humic acid structure and microbial nutrient restriction mechanism during organic-inorganic co-composting[J]. Journal of Environmental Management, 2024, 353: 120186. doi: 10.1016/j.jenvman.2024.120186
|
[13] |
陈丹, 程澳, 余旭芳, 等. 不同类型堆肥中腐殖酸与富里酸的光谱特性和分子量分布[J]. 生态与农村环境学报, 2024(2): 276-284.
|
[14] |
ZHAO P, HUANG Z, MA Q, et al. Artificial humic acid synthesized from food wastes: An efficient and recyclable adsorbent of Pb (Ⅱ) and Cd (Ⅱ) from aqueous solution[J]. Environmental Technology & Innovation, 2022, 27: 102399.
|
[15] |
CAMPITELLI P A, VELASCO M I, CEPPI S B. Chemical and physicochemical characteristics of humic acids extracted from compost, soil and amended soil[J]. Talanta, 2006, 69(5): 1234-1239. doi: 10.1016/j.talanta.2005.12.048
|
[16] |
SEN B, CHANDRA T S. Chemolytic and solid-state spectroscopic evaluation of organic matter transformation during vermicomposting of sugar industry wastes[J]. Bioresource Technology, 2007, 98(8): 1680-1683. doi: 10.1016/j.biortech.2006.06.007
|
[17] |
SCAGLIA B, NUNES R R, REZENDE M O O, et al. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost[J]. Science of the Total Environment, 2016, 562: 289-295. doi: 10.1016/j.scitotenv.2016.03.212
|
[18] |
MAJI D, MISRA P, SINGH S, et al. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum[J]. Applied Soil Ecology, 2017, 110: 97-108. doi: 10.1016/j.apsoil.2016.10.008
|
[19] |
MONDA H, COZZOLINO V, VINCI G, et al. Molecular characteristics of water-extractable organic matter from different composted biomasses and their effects on seed germination and early growth of maize[J]. Science of the Total Environment, 2017, 590-591: 40-49. doi: 10.1016/j.scitotenv.2017.03.026
|
[20] |
SPACCINI R, COZZOLINO V, DI MEO V, et al. Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery[J]. Science of the Total Environment, 2019, 646: 792-800. doi: 10.1016/j.scitotenv.2018.07.334
|
[21] |
YANG T, HODSON M E. Investigating the use of synthetic humic-like acid as a soil washing treatment for metal contaminated soil[J]. Science of the Total Environment, 2019, 647: 290-300. doi: 10.1016/j.scitotenv.2018.07.457
|
[22] |
WANG X, MUHMOOD A, DONG R, et al. Synthesis of humic-like acid from biomass pretreatment liquor: Quantitative appraisal of electron transferring capacity and metal-binding potential[J]. Journal of Cleaner Production, 2020, 255: 120243. doi: 10.1016/j.jclepro.2020.120243
|
[23] |
WANG M, LI Y, ZHANG Y, et al. Exploration of the H2O2 oxidation process and characteristic evaluation of humic acids from two typical lignites[J]. ACS Omega, 2021, 6(37): 24051-24061. doi: 10.1021/acsomega.1c03257
|
[24] |
GIANNAKOPOULOS E, DROSOS M, DELIGIANNAKIS Y. A humic-acid-like polycondensate produced with no use of catalyst[J]. Journal of Colloid and Interface Science, 2009, 336(1): 59-66. doi: 10.1016/j.jcis.2009.03.037
|
[25] |
DOBBSS L B, PASQUALOTO CANELLAS L, LOPES OLIVARES F, et al. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth[J]. Journal of Agricultural and Food Chemistry, 2010, 58(6): 3681-3688. doi: 10.1021/jf904385c
|
[26] |
SAVY D, COZZOLINO V, NEBBIOSO A, et al. Humic-like bioactivity on emergence and early growth of maize (Zea mays L. ) of water-soluble lignins isolated from biomass for energy[J]. Plant and Soil, 2016, 402(1): 221-233.
|
[27] |
CHA J Y, KIM T W, CHOI J H, et al. Fungal laccase-catalyzed oxidation of naturally occurring phenols for enhanced germination and salt tolerance of arabidopsis thaliana: a green route for synthesizing humic-like fertilizers[J]. Journal of Agricultural and Food Chemistry, 2017, 65(6): 1167-1177. doi: 10.1021/acs.jafc.6b04700
|
[28] |
SAVY D, CANELLAS L, VINCI G, et al. Humic-like water-soluble lignins from giant reed (Arundo donax L.) display hormone-like activity on plant growth[J]. Journal of Plant Growth Regulation, 2017, 36(4): 995-1001.
|
[29] |
YANG F, ZHANG S, CHENG K, et al. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation[J]. Science of the Total Environment, 2019, 686: 1140-1151. doi: 10.1016/j.scitotenv.2019.06.045
|
[30] |
GUILAYN F, BENBRAHIM M, ROUEZ M, et al. Humic-like substances extracted from different digestates: First trials of lettuce biostimulation in hydroponic culture[J]. Waste Management, 2020, 104: 239-245. doi: 10.1016/j.wasman.2020.01.025
|
[31] |
YAO Y, WANG X, YANG Y, et al. Molecular composition of size-fractionated fulvic acid-like substances extracted from spent cooking liquor and its relationship with biological activity[J]. Environmental Science & Technology, 2019, 53(24): 14752-14760.
|
[32] |
SHEN H, SHAN H, LIU L. Evolution process and controlled synthesis of humins with 5-hydroxymethylfurfural (HMF) as model molecule[J]. ChemSusChem, 2020, 13(3): 513-519. doi: 10.1002/cssc.201902799
|
[33] |
CHENG Z, EVERHART J L, TSILOMELEKIS G, et al. Structural analysis of humins formed in the Brønsted acid catalyzed dehydration of fructose[J]. Green Chemistry, 2018, 20(5): 997-1006. doi: 10.1039/C7GC03054A
|
[34] |
WAN L, WANG X, CONG C, et al. Effect of inoculating microorganisms in chicken manure composting with maize straw[J]. Bioresource Technology, 2020, 301: 122730. doi: 10.1016/j.biortech.2019.122730
|
[35] |
SHINDO H, HUANG P M. Catalytic effects of manganese (Ⅳ), iron (Ⅲ), aluminum, and silicon-oxides on the formation of phenolic polymers[J]. Soil Science Society of America Journal, 1984, 48(4): 927-934. doi: 10.2136/sssaj1984.03615995004800040045x
|
[36] |
YANG T, HODSON M E. The copper complexation ability of a synthetic humic-like acid formed by an abiotic humification process and the effect of experimental factors on its copper complexation ability[J]. Environmental Science and Pollution Research, 2018, 25(16): 15873-15884. doi: 10.1007/s11356-018-1836-2
|
[37] |
YANG T, HODSON M E. The impact of varying abiotic humification conditions and the resultant structural characteristics on the copper complexation ability of synthetic humic-like acids in aquatic environments[J]. Ecotoxicology and Environmental Safety, 2018, 165: 603-610. doi: 10.1016/j.ecoenv.2018.09.057
|
[38] |
YANG T, HODSON M E. Investigating the potential of synthetic humic-like acid to remove metal ions from contaminated water[J]. Science of the Total Environment, 2018, 635: 1036-1046. doi: 10.1016/j.scitotenv.2018.04.176
|
[39] |
SARLAKI E, GHOFRANI-ISFAHANI P, GHORBANI M, et al. Oxidation-alkaline-enhanced abiotic humification valorizes lignin-rich biogas digestate into artificial humic acids[J]. Journal of Cleaner Production, 2024, 435: 140409. doi: 10.1016/j.jclepro.2023.140409
|
[40] |
YANG F, ANTONIETTI M. The sleeping giant: A polymer View on humic matter in synthesis and applications[J]. Progress in Polymer Science, 2020, 100: 101182. doi: 10.1016/j.progpolymsci.2019.101182
|
[41] |
YANG F, ZHANG S, SONG J, et al. Synthetic humic acids solubilize otherwise insoluble phosphates to improve soil fertility[J]. Angewandte Chemie International Edition, 2019, 58(52): 18813-18816. doi: 10.1002/anie.201911060
|
[42] |
YANG F, ANTONIETTI M. Artificial humic acids: sustainable materials against climate change[J]. Advanced Science, 2020, 7(5): 1902992. doi: 10.1002/advs.201902992
|
[43] |
YANG F, ZHANG S, FU Q, et al. Conjugation of artificial humic acids with inorganic soil matter to restore land for improved conservation of water and nutrients[J]. Land Degradation & Development, 2020, 31(7): 884-893.
|
[44] |
CHEN P, YANG R, PEI Y, et al. Hydrothermal synthesis of similar mineral-sourced humic acid from food waste and the role of protein[J]. Science of the Total Environment, 2022, 828: 154440. doi: 10.1016/j.scitotenv.2022.154440
|
[45] |
王文祥, 张雷, 李爱民. 废弃生物质水热腐殖化产物与介质酸碱性响应关系[J]. 大连理工大学学报, 2022, 62(1): 9-17. doi: 10.7511/dllgxb202201002
|
[46] |
WAN G, ZHANG Q, LI M, et al. How pseudo-lignin is generated during dilute sulfuric acid pretreatment[J]. Journal of Agricultural and Food Chemistry, 2019, 67(36): 10116-10125. doi: 10.1021/acs.jafc.9b02851
|
[47] |
SHI N, LIU Q, JU R, et al. Condensation of α-carbonyl aldehydes leads to the formation of solid humins during the hydrothermal degradation of carbohydrates[J]. Acs Omega, 2019, 4(4): 7330-7343. doi: 10.1021/acsomega.9b00508
|
[48] |
ZHANG S, DU Q, CHENG K, et al. Efficient phosphorus recycling and heavy metal removal from wastewater sludge by a novel hydrothermal humification-technique[J]. Chemical Engineering Journal, 2020, 394: 124832. doi: 10.1016/j.cej.2020.124832
|
[49] |
ZHANG S, SONG J, DU Q, et al. Analog synthesis of artificial humic substances for efficient removal of mercury[J]. Chemosphere, 2020, 250: 126606. doi: 10.1016/j.chemosphere.2020.126606
|
[50] |
DU Q, LI G, ZHANG S, et al. High-dispersion zero-valent iron particles stabilized by artificial humic acid for lead ion removal[J]. Journal of Hazardous Materials, 2020, 383: 121170. doi: 10.1016/j.jhazmat.2019.121170
|
[51] |
ZINGARETTI D, LOMINCHAR M A, VERGINELLI I, et al. Humic acids extracted from compost as amendments for Fenton treatment of diesel-contaminated soil[J]. Environmental Science and Pollution Research, 2020, 27: 22225-22234. doi: 10.1007/s11356-020-08221-5
|
[52] |
HUANG Y N, QIAN T T, DANG F, et al. Significant contribution of metastable particulate organic matter to natural formation of silver nanoparticles in soils[J]. Nature Communications, 2019, 10(1): 3775. doi: 10.1038/s41467-019-11643-6
|
[53] |
REN Z, ZHANG H, WANG Y, et al. Multiple roles of dissolved organic matter released from decomposing rice straw at different times in organic pollutant photodegradation[J]. Journal of Hazardous Materials, 2021, 401: 123434. doi: 10.1016/j.jhazmat.2020.123434
|
[54] |
FILIPE O M, SANTOS E B, OTERO M, et al. Photodegradation of metoprolol in the presence of aquatic fulvic acids. Kinetic studies, degradation pathways and role of singlet oxygen, OH radicals and fulvic acids triplet states[J]. Journal of Hazardous Materials, 2020, 385: 121523. doi: 10.1016/j.jhazmat.2019.121523
|
[55] |
ZHOU Y, WU Y, LEI Y, et al. Redox-active moieties in dissolved organic matter accelerate the degradation of nitroimidazoles in SO4·–-based oxidation[J]. Environmental Science & Technology, 2021, 55(21): 14844-14853.
|
[56] |
YU H, LIU G, JIN R, et al. Goethite-humic acid coprecipitate mediated Fenton-like degradation of sulfanilamide: The role of coprecipitated humic acid in accelerating Fe (Ⅲ)/Fe (Ⅱ) cycle and degradation efficiency[J]. Journal of Hazardous Materials, 2021, 403: 124026. doi: 10.1016/j.jhazmat.2020.124026
|
[57] |
YAN Z, HE Y, CAI H, et al. Interconnection of key microbial functional genes for enhanced benzo [a] pyrene biodegradation in sediments by microbial electrochemistry[J]. Environmental Science & Technology, 2017, 51(15): 8519-85129.
|
[58] |
BOYSAN CANAL S, BOZKURT M, YıLMAZ H. The effect of humic acid on plant growth, phytoremediation and oxidative stress in rapeseed (Brassica napus L. ) grown under heavy metal stress[J]. Yüzüncü Yıl Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi, 2022, 32(2): 237-248.
|
[59] |
PENG X X, GAI S, CHENG K, et al. Roles of humic substances redox activity on environmental remediation[J]. Journal of Hazardous Materials, 2022, 435: 129070. doi: 10.1016/j.jhazmat.2022.129070
|
[60] |
JIA H, ZHAO S, SHI Y, et al. Transformation of polycyclic aromatic hydrocarbons and formation of environmentally persistent free radicals on modified montmorillonite: the role of surface metal ions and polycyclic aromatic hydrocarbon molecular properties[J]. Environmental Science & Technology, 2018, 52(10): 5725-5733.
|
[61] |
SHARPLESS C M, BLOUGH N V. The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties[J]. Environmental Science: Processes & Impacts, 2014, 16(4): 654-671.
|
[62] |
ADEGBOYEGA N F, SHARMA V K, SISKOVA K, et al. Interactions of aqueous Ag+ with fulvic acids: Mechanisms of silver nanoparticle formation and investigation of stability[J]. Environmental Science & Technology, 2013, 47(2): 757-764.
|
[63] |
XU J, DAI Y, SHI Y, et al. Mechanism of Cr (Ⅵ) reduction by humin: Role of environmentally persistent free radicals and reactive oxygen species[J]. Science of the Total Environment, 2020, 725: 138413. doi: 10.1016/j.scitotenv.2020.138413
|
[64] |
CHRYSOCHOOU M, THEOLOGOU E, BOMPOTI N, et al. Occurrence, origin and transformation processes of geogenic chromium in soils and sediments[J]. Current Pollution Reports, 2016, 2: 224-235. doi: 10.1007/s40726-016-0044-2
|
[65] |
ZHANG J, CHEN L, YIN H, et al. Mechanism study of humic acid functional groups for Cr (Ⅵ) retention: two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis[J]. Environmental Pollution, 2017, 225: 86-92. doi: 10.1016/j.envpol.2017.03.047
|
[66] |
QIAO J, LI X, LI F, et al. Humic substances facilitate arsenic reduction and release in flooded paddy soil[J]. Environmental Science & Technology, 2019, 53(9): 5034-5042.
|
[67] |
WANG J, WANG K, GUO Y, et al. Photochemical degradation of nebivolol in different natural organic matter solutions under simulated sunlight irradiation: Kinetics, mechanism and degradation pathway[J]. Water Research, 2020, 173: 115524. doi: 10.1016/j.watres.2020.115524
|
[68] |
JIANG J, BAUER I, PAUL A, et al. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone[J]. Environmental Science & Technology, 2009, 43(10): 3639-3645.
|
[69] |
GUSAIN R, GUPTA K, JOSHI P, et al. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review[J]. Advances in Colloid and Interface Science, 2019, 272: 102009. doi: 10.1016/j.cis.2019.102009
|
[70] |
SHI Y, DAI Y, LIU Z, et al. Light-induced variation in environmentally persistent free radicals and the generation of reactive radical species in humic substances[J]. Frontiers of Environmental Science & Engineering, 2020, 14: 1-10.
|
[71] |
SHI Y, ZHANG C, LIU J, et al. Distribution of persistent free radicals in different molecular weight fractions from peat humic acids and their impact in reducing goethite[J]. Science of the Total Environment, 2021, 797: 149173. doi: 10.1016/j.scitotenv.2021.149173
|
[72] |
NIE J, ZOU J, YAN S, et al. Photosensitized transformation of peroxymonosulfate in dissolved organic matter solutions under simulated solar irradiation[J]. Environmental Science & Technology, 2022, 56(3): 1963-1972.
|
[73] |
ZHAO L, LIN Z R, MA X H, et al. Catalytic activity of different iron oxides: Insight from pollutant degradation and hydroxyl radical formation in heterogeneous Fenton-like systems[J]. Chemical Engineering Journal, 2018, 352: 343-351. doi: 10.1016/j.cej.2018.07.035
|
[74] |
HUANG Y, YANG J. Degradation of sulfamethoxazole by the heterogeneous Fenton-like reaction between gallic acid and ferrihydrite[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112847. doi: 10.1016/j.ecoenv.2021.112847
|
[75] |
QIAN X, REN M, FANG M, et al. Hydrophilic mesoporous carbon as iron (Ⅲ)/(Ⅱ) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants[J]. Applied Catalysis B: Environmental, 2018, 231: 108-114. doi: 10.1016/j.apcatb.2018.03.016
|
[76] |
YU H, LIU G, DONG B, et al. Synergistic catalytic Fenton-like degradation of sulfanilamide by biosynthesized goethite-reduced graphene oxide composite[J]. Journal of Hazardous Materials, 2021, 415: 125704. doi: 10.1016/j.jhazmat.2021.125704
|
[77] |
YUAN Y, XI B, HE X, et al. Compost-derived humic acids as regulators for reductive degradation of nitrobenzene[J]. Journal of Hazardous Materials, 2017, 339: 378-384. doi: 10.1016/j.jhazmat.2017.06.047
|
[78] |
LIU J, FAN J, HE T, et al. The mechanism of aquatic photodegradation of organophosphorus sensitized by humic acid-Fe3+ complexes[J]. Journal of Hazardous Materials, 2020, 384: 121466. doi: 10.1016/j.jhazmat.2019.121466
|
[79] |
GONçALVES N P, MINELLA M, FABBRI D, et al. Humic acid coated magnetic particles as highly efficient heterogeneous photo-Fenton materials for wastewater treatments[J]. Chemical Engineering Journal, 2020, 390: 124619. doi: 10.1016/j.cej.2020.124619
|
[80] |
LEITA L, MARGON A, PASTRELLO A, et al. Soil humic acids may favour the persistence of hexavalent chromium in soil[J]. Environmental Pollution, 2009, 157(6): 1862-1866. doi: 10.1016/j.envpol.2009.01.020
|
[81] |
VOLKOV I, POLYAKOV E. Interaction of humic acids with microelements/radionuclides in sorption systems[J]. Radiochemistry, 2020, 62: 141-160. doi: 10.1134/S1066362220020010
|
[82] |
EL-GHENYMY A, ALSHEYAB M, KHODARY A, et al. Corrosion behavior of pure titanium anodes in saline medium and their performance for humic acid removal by electrocoagulation[J]. Chemosphere, 2020, 246: 125674. doi: 10.1016/j.chemosphere.2019.125674
|
[83] |
SOLER-ROVIRA P, MADEJóN E, MADEJóN P, et al. In situ remediation of metal-contaminated soils with organic amendments: Role of humic acids in copper bioavailability[J]. Chemosphere, 2010, 79(8): 844-849. doi: 10.1016/j.chemosphere.2010.02.054
|
[84] |
ANTILEN M, GUZMAN D, DEL VALLE M A, et al. Application of polypyrrole/humic acid composite electrode for copper ion extraction from drinking water[J]. International Journal of Electrochemical Science, 2012, 7(7): 5939-5950. doi: 10.1016/S1452-3981(23)19452-1
|
[85] |
AHMED I, HELAL A A, EL AZIZ N A, et al. Influence of some organic ligands on the adsorption of lead by agricultural soil[J]. Arabian Journal of Chemistry, 2019, 12(8): 2540-2547. doi: 10.1016/j.arabjc.2015.03.012
|
[86] |
LALVANI S, DENEVE B, WESTON A. Prevention of pyrite dissolution in acidic media[J]. Corrosion, 1991, 47(1): 55-61. doi: 10.5006/1.3585220
|
[87] |
UMOREN S A, INAM E I, UDOIDIONG A A, et al. Humic acid from livestock dung: Ecofriendly corrosion inhibitor for 3SR aluminum alloy in alkaline medium[J]. Chemical Engineering Communications, 2015, 202(2): 206-216. doi: 10.1080/00986445.2013.836635
|
[88] |
LIU Q, LI H, JIN G, et al. Assessing the influence of humic acids on the weathering of galena and its environmental implications[J]. Ecotoxicology and Environmental Safety, 2018, 158: 230-238. doi: 10.1016/j.ecoenv.2018.04.030
|
[89] |
BRADLEY P M, CHAPELLE F H, LOVLEY D R. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene[J]. Applied and Environmental Microbiology, 1998, 64(8): 3102-3105. doi: 10.1128/AEM.64.8.3102-3105.1998
|
[90] |
GU B, CHEN J. Enhanced microbial reduction of Cr (Ⅵ) and U (Ⅵ) by different natural organic matter fractions[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3575-3582. doi: 10.1016/S0016-7037(03)00162-5
|
[91] |
CERVANTES F J, DIJKSMA W, DUONG-DAC T, et al. Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors[J]. Applied and Environmental Microbiology, 2001, 67(10): 4471-4478. doi: 10.1128/AEM.67.10.4471-4478.2001
|
[92] |
FINNERAN K T, LOVLEY D R. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA)[J]. Environmental Science & Technology, 2001, 35(9): 1785-1790.
|
[93] |
KE L, BAO W, CHEN L, et al. Effects of humic acid on solubility and biodegradation of polycyclic aromatic hydrocarbons in liquid media and mangrove sediment slurries[J]. Chemosphere, 2009, 76(8): 1102-1108. doi: 10.1016/j.chemosphere.2009.04.022
|
[94] |
GERKE J. The central role of soil organic matter in soil fertility and carbon storage[J]. Soil Systems, 2022, 6(2): 33. doi: 10.3390/soilsystems6020033
|
[95] |
ZANDONADI D B, CANELLAS L P, FAçANHA A R. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+pumps activation[J]. Planta, 2007, 225: 1583-1595. doi: 10.1007/s00425-006-0454-2
|
[96] |
DENG F, CAO Z, LUO Y, et al. Production of artificial humic acid from corn straw acid hydrolysis residue with biogas slurry impregnation for fertilizer application[J]. Journal of Environmental Management, 2023, 345: 118845. doi: 10.1016/j.jenvman.2023.118845
|
[97] |
ZHANG Y, LIU G, GAO S, et al. Effect of humic acid on phytoremediation of heavy metal contaminated sediment[J]. Journal of Hazardous Materials Advances, 2023, 9: 100235. doi: 10.1016/j.hazadv.2023.100235
|
[98] |
ZHAO J, LIANG G, ZHANG X, et al. Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water[J]. Science of the Total Environment, 2019, 688: 1205-1215. doi: 10.1016/j.scitotenv.2019.06.287
|
[99] |
CONTE P, AGRETTO A, SPACCINI R, et al. Soil remediation: Humic acids as natural surfactants in the washings of highly contaminated soils[J]. Environmental Pollution, 2005, 135(3): 515-522. doi: 10.1016/j.envpol.2004.10.006
|
[100] |
任煊静. 生化黄腐酸在石油烃污染土壤修复中的应用研究[D]. 上海: 华东师范大学, 2018.
|
[101] |
HU D, ZENG Q, ZHU J, et al. Promotion of humic acid transformation by abiotic and biotic fe redox cycling in nontronite[J]. Environmental Science & Technology, 2023, 57(48): 19760-19771.
|
[102] |
XU J, RONG Y, LIU L, et al. Efficient Fenton oriented oxidation of petroleum hydrocarbons in soil by regulating hydrophilic functional groups in soil organic matter[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111772. doi: 10.1016/j.jece.2023.111772
|
[103] |
郑瑾, 王馨妤, 李杰, 等. 腐殖酸改性生物质电厂灰固定化微生物修复石油烃污染土壤[J]. 环境工程, 2020, 38(8): 34-40.
|
[104] |
DMITRIEVA E D, GRINEVICH V I, GERTSEN M M. Degradation of oil and petroleum products by biocompositions based on humic acids of peats and oil-degrading microorganisms[J]. Russian Journal of General Chemistry, 2022, 92: 2920-2930. doi: 10.1134/S1070363222120453
|
[105] |
PARK S, KIM K S, KIM J T, et al. Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals[J]. Journal of Environmental Sciences, 2011, 23(12): 2034-2041. doi: 10.1016/S1001-0742(10)60670-5
|
[106] |
AHMADKALAEI S P J, GAN S, NG H K, et al. The role of humic acid in Fenton reaction for the removal of aliphatic fraction of total petroleum hydrocarbons (diesel range) in soil[J]. Environmental Science and Ecotechnology, 2021, 7: 100109. doi: 10.1016/j.ese.2021.100109
|
[107] |
张秀霞, 韩雨彤, 张涵, 等. 腐殖酸对石油污染土壤特性和生物修复效果的影响[J]. 腐殖酸, 2017(2): 45.
|
[108] |
AKHANOVA T R, LYUBCHENKO N P, SARMURZINA R G, et al. Complex restoration of oil-contaminated soils with new organomineral reagents[J]. Water, Air, & Soil Pollution, 2023, 234(11): 686.
|
[109] |
FASHINA T, ADESANWO O, ADEBIYI F. Influence of humic acid on biodegradation of petroleum hydrocarbons in oil-contaminated soils[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(17): 2624-2632. doi: 10.1080/15567036.2015.1079571
|
[110] |
WANG X, ZHENG J, HAN Z, et al. Bioremediation of crude oil‐contaminated soil by hydrocarbon‐degrading microorganisms immobilized on humic acid‐modified biofuel ash[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(6): 1904-1912.
|