[1] 陈翠芝, 陈伟国. 城市主要大气污染物与呼吸系统疾病相关性浅析[J]. 上海环境科学, 1994(9): 27-30,46. CHEN C Z, CHEN W G. Preliminary analysis of correlation between respiratory disease and urban air pollutants[J]. Shanghai Environmental Sciences, 1994(9): 27-30,46 (in Chinese).
[2] HONG Z, WANG Z, LI X B. Catalytic oxidation of nitric oxide (NO) over different catalysts: An overview[J]. Catalysis Science & Technology, 2017, 7(16): 3440-3452.
[3] MA Q, WANG Z H, LIN F W, et al. Characteristics of O3 oxidation for simultaneous desulfurization and denitration with limestone–gypsum wet scrubbing: Application in a carbon black drying kiln furnace[J]. Energy & Fuels, 2016, 30(3): 2302-2308.
[4] 苏士焜, 宗保宁, 荣峻峰. 金属氧化物催化剂用于NO催化氧化的研究进展[J]. 化工环保, 2022, 42(3): 249-254 doi: 10.3969/j.issn.1006-1878.2022.03.002 SU S K, ZONG B N, RONG J F. Research progress of metal oxide catalysts for catalytic oxidation of NO[J]. Environmental Protection of Chemical Industry, 2022, 42(3): 249-254(in Chinese) doi: 10.3969/j.issn.1006-1878.2022.03.002
[5] 王先涛, 马宏燎, 柏子龙. 锰铈复合氧化物用于NO催化氧化的研究[J]. 现代化工, 2017, 37(2): 92-95. WANG X T, MA H L, BAI Z. Catalytic oxidation of NO to NO2 on Mn-Ce-Ox catalyst[J]. Modern Chemical Industry, 2017, 37(2): 92-95 (in Chinese).
[6] GAO F Y, CHU C, ZHU W J, et al. High-efficiency catalytic oxidation of nitric oxide over spherical MnCo spinel catalyst at low temperature[J]. Applied Surface Science, 2019, 479: 548-556. doi: 10.1016/j.apsusc.2019.02.116
[7] 曹禄彬, 赵锋, 胡国新. Mn-Fe/γ-Al2O3的制备与NO催化氧化性能[J]. 实验室研究与探索, 2010, 29(8): 4-7. doi: 10.3969/j.issn.1006-7167.2010.08.002 CAO L B, ZHAO F, HU G X. Synthesis of Mn-Fe/γ-Al2O3 and its performance in catalytic oxidation of NO[J]. Research and Exploration in Laboratory, 2010, 29(8): 4-7 (in Chinese). doi: 10.3969/j.issn.1006-7167.2010.08.002
[8] LI K, TANG X L, YI H H, et al. Catalytic oxidation of NO over Mn-Co-Ce-O x catalysts: Effect of reaction conditions[J]. Research on Chemical Intermediates, 2014, 40(1): 169-177. doi: 10.1007/s11164-012-0953-7
[9] LI K, TANG X L, YI H H, et al. Low-temperature catalytic oxidation of NO over Mn-Co-Ce-O x catalyst[J]. Chemical Engineering Journal, 2012, 192: 99-104. doi: 10.1016/j.cej.2012.03.087
[10] JIANG B Q, WU Z B, LIU Y, et al. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe–Mn/TiO2[J]. The Journal of Physical Chemistry C, 2010, 114(11): 4961-4965. doi: 10.1021/jp907783g
[11] LIN F W, SHAO J M, TANG H R, et al. Enhancement of NO oxidation activity and SO2 resistance over LaMnO3+ δ perovskites catalysts with metal substitution and acid treatment[J]. Applied Surface Science, 2019, 479: 234-246. doi: 10.1016/j.apsusc.2019.02.104
[12] ZHAO B H, RAN R, WU X D, et al. Phase structures, morphologies, and NO catalytic oxidation activities of single-phase MnO2 catalysts[J]. Applied Catalysis A:General, 2016, 514: 24-34. doi: 10.1016/j.apcata.2016.01.005
[13] LI M J, HUANG K, SCHOTT J A, et al. Effect of metal oxides modification on CO2 adsorption performance over mesoporous carbon[J]. Microporous and Mesoporous Materials, 2017, 249: 34-41. doi: 10.1016/j.micromeso.2017.04.033
[14] WANG X B, DUAN R B, LIU W, et al. The insight into the role of CeO2 in improving low-temperature catalytic performance and SO2 tolerance of MnCoCeO x microflowers for the NH3-SCR of NO x[J]. Applied Surface Science, 2020, 510: 145517. doi: 10.1016/j.apsusc.2020.145517
[15] 张弛. 多级结构钴基催化剂的制备及其净化VOCs机制研究[D]. 上海: 上海工程技术大学, 19-32. ZHANG C. Preparation of multi-stage cobalt-based catalyst and study on its mechanism of VOCs purification[D]. Shanghai: Shanghai University of Engineering Science: 19-32(in Chinese).
[16] MERCIER F, ALLIOT C, BION L, et al. XPS study of Eu(Ⅲ) coordination compounds: Core levels binding energies in solid mixed-oxo-compounds Eu mX xO y[J]. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150(1): 21-26. doi: 10.1016/j.elspec.2005.08.003
[17] GUO Y H, WEI H Y, ZHAO G Y, et al. Low temperature catalytic performance of coal-fired flue gas oxidation over Mn-Co-Ce-Ox[J]. Fuel, 2017, 206: 318-324. doi: 10.1016/j.fuel.2017.06.034
[18] CHEN X P, LIU Q, WU Q, et al. A hollow structure WO3@CeO2 catalyst for NH3-SCR of NO x[J]. Catalysis Communications, 2021, 149: 106252. doi: 10.1016/j.catcom.2020.106252
[19] TANG X L, CHEN D, CHU C, et al. Mn-Co binary oxides for low-temperature catalytic oxidation of NO: Effect of SO2 and regeneration[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(10): 2956-2964.
[20] SHEN B X, ZHU S W, ZHANG X, et al. Simultaneous removal of NO and Hg0 using Fe and Co co-doped Mn-Ce/TiO2 catalysts[J]. Fuel, 2018, 224: 241-249. doi: 10.1016/j.fuel.2018.03.080
[21] GAO F Y, TANG X L, YI H H, et al. Novel Co–or Ni–Mn binary oxide catalysts with hydroxyl groups for NH3–SCR of NO x at low temperature[J]. Applied Surface Science, 2018, 443: 103-113. doi: 10.1016/j.apsusc.2018.02.151
[22] WARANG T, PATEL N, SANTINI A, et al. Pulsed laser deposition of Co3O4 nanoparticles assembled coating: Role of substrate temperature to tailor disordered to crystalline phase and related photocatalytic activity in degradation of methylene blue[J]. Applied Catalysis A:General, 2012, 423/424: 21-27. doi: 10.1016/j.apcata.2012.02.037
[23] TANG X L, GAO F Y, XIANG Y, et al. Effect of potassium-precursor promoters on catalytic oxidation activity of Mn-CoOx catalysts for NO removal[J]. Industrial & Engineering Chemistry Research, 2015, 54(37): 9116-9123.
[24] SHAO J M, LIN F W, WANG Z H, et al. Low temperature catalytic ozonation of toluene in flue gas over Mn-based catalysts: Effect of support property and SO2/water vapor addition[J]. Applied Catalysis B:Environmental, 2020, 266: 118662. doi: 10.1016/j.apcatb.2020.118662
[25] WANG D D, CHENG J, WANG B H, et al. Plasma-catalytic high-efficiency oxidation of NO over Co-Mn/Ti catalysts using surface dielectric barrier discharge plasma[J]. Vacuum, 2019, 167: 249-254. doi: 10.1016/j.vacuum.2019.06.004
[26] GU T T, LIU Y, WENG X L, et al. The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3[J]. Catalysis Communications, 2010, 12(4): 310-313. doi: 10.1016/j.catcom.2010.10.003
[27] XIE C Y, ZHU B Z, SUN Y L, et al. Effect of doping Cr on NH3 adsorption and NO oxidation over the Fe xO y/AC surface: A DFT-D study[J]. Journal of Hazardous Materials, 2021, 416: 125798. doi: 10.1016/j.jhazmat.2021.125798
[28] CHEN G Y, WANG Z, LIN F W, et al. Comparative investigation on catalytic ozonation of VOCs in different types over supported MnO x catalysts[J]. Journal of Hazardous Materials, 2020, 391: 122218. doi: 10.1016/j.jhazmat.2020.122218
[29] PICASSO G, GUTIÉRREZ M, PINA M P, et al. Preparation and characterization of Ce-Zr and Ce-Mn based oxides for n-hexane combustion: Application to catalytic membrane reactors[J]. Chemical Engineering Journal, 2007, 126(2/3): 119-130.
[30] LIANG Y L, HUANG Y F, ZHANG H L, et al. Interactional effect of cerium and manganese on NO catalytic oxidation[J]. Environmental Science and Pollution Research, 2017, 24(10): 9314-9324. doi: 10.1007/s11356-017-8645-x