[1] |
BERMUDEZ G M A, JASAN R, PLÁ R, et al. Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition[J]. Journal of Hazardous Materials, 2012, 213/214: 447-456. doi: 10.1016/j.jhazmat.2012.02.023
|
[2] |
刘玉玲, 铁柏清, 李园星露, 等. 耐镉细菌的分离及其对土壤中镉的形态影响[J]. 农业环境科学学报, 2018, 37(2): 250-258. doi: 10.11654/jaes.2017-0966
LIU Y L, TIE B Q, LI Y, et al. Isolation of a Cd-resistant bacterium and its effect on the speciation of Cd in soil[J]. Journal of Agro-Environment Science, 2018, 37(2): 250-258 (in Chinese). doi: 10.11654/jaes.2017-0966
|
[3] |
王威振, 陈颢明, 闵芳芳, 等. 不同部位梧桐生物质炭对水溶液中镉吸附的机理[J]. 环境化学, 2022, 41(1): 327-339. doi: 10.7524/j.issn.0254-6108.2020082701
WANG W Z, CHEN H M, MIN F F, et al. Mechanism of cadmium adsorption by biochar from different parts of Platanus acerifolia in aqueous solution[J]. Environmental Chemistry, 2022, 41(1): 327-339 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020082701
|
[4] |
LIU G N, WANG J, XUE W, et al. Effect of the size of variable charge soil particles on cadmium accumulation and adsorption[J]. Journal of Soils and Sediments, 2017, 17(12): 2810-2821. doi: 10.1007/s11368-017-1712-6
|
[5] |
WANG R H, ZHU X F, QIAN W, et al. Adsorption of Cd(II) by two variable-charge soils in the presence of pectin[J]. Environmental Science and Pollution Research, 2016, 23(13): 12976-12982. doi: 10.1007/s11356-016-6465-z
|
[6] |
杨阳, 彭叶棉, 王莹, 等. 稻田土壤镉的表面络合模型及其生物有效性验证[J]. 科学通报, 2019, 64(33): 3449-3457.
YANG Y, PENG Y M, WANG Y, et al. Surface complexation model of Cd in paddy soil and its validation with bioavailability[J]. Chinese Science Bulletin, 2019, 64(33): 3449-3457 (in Chinese).
|
[7] |
PÉREZ C, ANTELO J, FIOL S, et al. Modeling oxyanion adsorption on ferralic soil, part 2: Chromate, selenate, molybdate, and arsenate adsorption[J]. Environmental Toxicology and Chemistry, 2014, 33(10): 2217-2224. doi: 10.1002/etc.2581
|
[8] |
PÉREZ C, ANTELO J, FIOL S, et al. Modeling oxyanion adsorption on ferralic soil, part 1: Parameter validation with phosphate ion[J]. Environmental Toxicology and Chemistry, 2014, 33(10): 2208-2216. doi: 10.1002/etc.2612
|
[9] |
刘艳, 宋瑞明, 杨阳, 等. 贵州砂页岩母质黄壤镉吸附及表面络合模型研究[J]. 环境科学研究, 2022, 35(7): 1715-1724. doi: 10.13198/j.issn.1001-6929.2022.03.22
LIU Y, SONG R M, YANG Y, et al. Cadmium adsorption and surface complexation model of sand shale yellow soil in Guizhou Province[J]. Research of Environmental Sciences, 2022, 35(7): 1715-1724 (in Chinese). doi: 10.13198/j.issn.1001-6929.2022.03.22
|
[10] |
吴江彤, 曾安容, 李清兰, 等. 重金属-柠檬酸-针铁矿三元体系的表面络合模型研究[J]. 环境化学, 2021, 40(2): 520-530. doi: 10.7524/j.issn.0254-6108.2020053102
WU J T, ZENG A R, LI Q L, et al. Development of surface complexation model of heavy metal-citric acid-goethite ternary system[J]. Environmental Chemistry, 2021, 40(2): 520-530 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020053102
|
[11] |
程鹏飞, 王莹, 李芳柏, 等. 可变电荷土壤表面酸碱性质与模型研究进展[J]. 土壤学报, 2019, 56(3): 516-527. doi: 10.11766/trxb201806070303
CHENG P F, WANG Y, LI F B, et al. Progresses in research on surface acid-base properties of variable charge soils and their models[J]. Acta Pedologica Sinica, 2019, 56(3): 516-527 (in Chinese). doi: 10.11766/trxb201806070303
|
[12] |
程鹏飞, 王莹, 程宽, 等. 红壤可变电荷矿物的酸碱缓冲能力及表面络合模型[J]. 化学学报, 2017, 75(6): 637-644. doi: 10.6023/A17020056
CHENG P F, WANG Y, CHENG K, et al. The acid-base buffer capacity of red soil variable charge minerals and its surface complexation model[J]. Acta Chimica Sinica, 2017, 75(6): 637-644 (in Chinese). doi: 10.6023/A17020056
|
[13] |
QU C C, MA M K, CHEN W L, et al. Modeling of Cd adsorption to goethite-bacteria composites[J]. Chemosphere, 2018, 193: 943-950. doi: 10.1016/j.chemosphere.2017.11.100
|
[14] |
程鹏飞. 东南丘陵区红壤酸碱缓冲能力及表面络合模型[D]. 贵阳: 贵州师范大学, 2018: 1-40.
CHENG P F. The acid-base buffering capacity and surface complexation model of red soils in the hilly region of southeastern China[D]. Guiyang: Guizhou Normal University, 2018: 1-40 (in Chinese).
|
[15] |
WANG N, DU H H, HUANG Q Y, et al. Surface complexation modeling of Cd(II) sorption to montmorillonite, bacteria, and their composite[J]. Biogeosciences, 2016, 13(19): 5557-5566. doi: 10.5194/bg-13-5557-2016
|
[16] |
WEN X C, WANG Y, CHENG P F, et al. Surface charge properties of variable charge soils influenced by environmental factors[J]. Applied Clay Science, 2020, 189: 105522. doi: 10.1016/j.clay.2020.105522
|
[17] |
杨阳. 稻田土壤生物地球化学驱动的镉形态转化机制与模型[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2021: 1-49.
YANG Y. Mechanisms and models of Cd transformation driven by the biogeochemical processes in paddy soils[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2021: 1-49(in Chinese).
|
[18] |
郁何敏, 李焱, 石振清, 等. 1-site/2-pKa表面络合模型预测土壤中Cd2+的吸附及生物有效性[J]. 农业环境科学学报, 2022, 41(6): 1211-1220,1150.
YU H M, LI Y, SHI Z Q, et al. Predicting the adsorption and bioavailability of Cd2+ in soils using the 1-site/2-pKa surface complexation model[J]. Journal of Agro-Environment Science, 2022, 41(6): 1211-1220,1150 (in Chinese).
|
[19] |
ALAM M S, SWAREN L, von GUNTEN K, et al. Application of surface complexation modeling to trace metals uptake by biochar-amended agricultural soils[J]. Applied Geochemistry, 2018, 88: 103-112. doi: 10.1016/j.apgeochem.2017.08.003
|
[20] |
刘艳. 贵州省两种母质黄壤中镉的吸附行为及表面络合模型[D]. 贵阳: 贵州师范大学, 2022: 1-62.
LIU Y. Study on cadmium adsorption behavior and surface complexation model of two parent yellow soils in Guizhou Province[D]. Guiyang: Guizhou Normal University, 2022: 1-62(in Chinese).
|
[21] |
贵州省土壤普查办公室. 贵州省土壤[M]. 贵阳: 贵州科技出版社, 1994: 63-167.
Guizhou Provincial Soil Survey Office. Soil in Guizhou Province[M]. Guiyang: Guizhou Science and Technology Press, 1994: 63-167(in Chinese).
|
[22] |
赵其国. 中国东部红壤地区土壤退化的时空变化、机理及调控[M]. 北京: 科学出版社, 2002: 70-75.
ZHAO Q G. Temporal and spatial changes, mechanism and regulation of soil degradation in red soil region of Eastern China[M]. Beijing: Science Press, 2002: 70-75(in Chinese).
|
[23] |
凌云, 刘汉燚, 张小婷, 等. 西南地区典型土壤酸化特征及其与重金属形态活性的耦合关系[J]. 环境科学, 2023, 44(1): 376-386. doi: 10.13227/j.hjkx.202202070
LING Y, LIU H Y, ZHANG X T, et al. Characteristics of typical soil acidification and effects of heavy metal speciation and availability in southwest China[J]. Environmental Science, 2023, 44(1): 376-386 (in Chinese). doi: 10.13227/j.hjkx.202202070
|
[24] |
生态环境部. 土壤环境监测分析方法[M]. 北京: 中国环境出版集团, 2019.
Ministry of Ecology and Environment. Soil environmental monitoring and analysis method[M]. Beijing: China Environmental Publishing Group, 2019(in Chinese).
|
[25] |
刘世全, 张世熔, 伍钧, 等. 土壤pH与碳酸钙含量的关系[J]. 土壤, 2002, 34(5): 279-282,288. doi: 10.3321/j.issn:0253-9829.2002.05.006
LIU S Q, ZHANG S R, WU J, et al. Relationship between soil pH and calcium carbonate content[J]. Soils, 2002, 34(5): 279-282,288 (in Chinese). doi: 10.3321/j.issn:0253-9829.2002.05.006
|
[26] |
耿增超, 戴伟. 土壤学[M]. 北京: 科学出版社, 2011.
GENG Z C, DAI W. Soil Science[M]. Beijing: Science Press, 2011(in Chinese).
|
[27] |
DOUCH J, HAMDANI M, FESSI H, et al. Acid–base behavior of a colloidal clays fraction extracted from natural quartz sand: Effect of permanent surface charge[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 338(1/2/3): 51-60.
|
[28] |
ROZALÉN M, BRADY P V, HUERTAS F J. Surface chemistry of K-montmorillonite: Ionic strength, temperature dependence and dissolution kinetics[J]. Journal of Colloid and Interface Science, 2009, 333(2): 474-484. doi: 10.1016/j.jcis.2009.01.059
|
[29] |
温晓翠. 电位滴定法对可变电荷土壤表面酸碱缓冲能力的研究[D]. 广州: 广东工业大学, 2021: 1-49.
WEN X C. Study on the acid base buffer capacity of variable charge soils by potential titration[D]. Guangzhou: Guangdong University of Technology, 2021: 1-49 (in Chinese).
|
[30] |
YANG Y, WANG Y, PENG Y M, et al. Acid-base buffering characteristics of non-calcareous soils: Correlation with physicochemical properties and surface complexation constants[J]. Geoderma, 2020, 360: 114005. doi: 10.1016/j.geoderma.2019.114005
|
[31] |
GAO Y, MUCCI A. Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution[J]. Geochimica et Cosmochimica Acta, 2001, 65(14): 2361-2378. doi: 10.1016/S0016-7037(01)00589-0
|
[32] |
WANG Y, CHENG P F, LI F B, et al. Variable charges of a red soil from different depths: Acid-base buffer capacity and surface complexation model[J]. Applied Clay Science, 2018, 159: 107-115. doi: 10.1016/j.clay.2017.08.003
|
[33] |
BONIFACIO E, CATONI M, FALSONE G, et al. Evolution of surface properties and organic matter stabilisation in podzolic B horizons as assessed by nitrogen and phosphate sorption[J]. Biology and Fertility of Soils, 2013, 49(5): 505-516. doi: 10.1007/s00374-013-0788-4
|
[34] |
WAGAI R, MAYER L M, KITAYAMA K. Extent and nature of organic coverage of soil mineral surfaces assessed by a gas sorption approach[J]. Geoderma, 2009, 149(1/2): 152-160.
|
[35] |
杜辉辉. Cd(Ⅱ)、Pb(Ⅱ)在土壤矿物—有机互作界面的分子结合机制[D]. 武汉: 华中农业大学, 2017: 1-104.
DU H H. Molecular binding mechanisms of cadmium and lead at the mineral-organic interface[D]. Wuhan: Huazhong Agricultural University, 2017: 1-104(in Chinese).
|
[36] |
KOSMULSKI M. The pH dependent surface charging and points of zero charge. Ⅷ. Update[J]. Advances in Colloid and Interface Science, 2020, 275: 102064. doi: 10.1016/j.cis.2019.102064
|
[37] |
KOSMULSKI M. The pH dependent surface charging and points of zero charge. Ⅸ. Update[J]. Advances in Colloid and Interface Science, 2021, 296: 102519. doi: 10.1016/j.cis.2021.102519
|
[38] |
KOSMULSKI M. The pH-dependent surface charging and points of zero charge Ⅶ. Update[J]. Advances in Colloid and Interface Science, 2018, 251: 115-138. doi: 10.1016/j.cis.2017.10.005
|
[39] |
ALEKSEEVA T, ALEKSEEV A, XU R K, et al. Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of Alfisols in Eastern China[J]. Environmental Geochemistry and Health, 2011, 33(2): 137-148. doi: 10.1007/s10653-010-9327-5
|
[40] |
HAYNES R J. Lime and phosphate in the soil-plant system[M]//Advances in Agronomy Volume 37. Amsterdam: Elsevier, 1984: 249-315.
|
[41] |
LI K W, LU H L, NKOH J N, et al. Aluminum mobilization as influenced by soil organic matter during soil and mineral acidification: A constant pH study[J]. Geoderma, 2022, 418: 115853. doi: 10.1016/j.geoderma.2022.115853
|