[1] |
BEN-AHARON I, van LAARHOVEN H W M, FONTANA E, et al. Early-onset cancer in the gastrointestinal tract is on the rise-evidence and implications[J]. Cancer Discovery, 2023, 13(3): 538-551. doi: 10.1158/2159-8290.CD-22-1038
|
[2] |
SANMARCO L M, CHAO C C, WANG Y C, et al. Identification of environmental factors that promote intestinal inflammation[J]. Nature, 2022, 611: 801-809. doi: 10.1038/s41586-022-05308-6
|
[3] |
WU Y, LI Y P, GIOVANNUCCI E. Potential impact of time trend of lifestyle risk factors on burden of major gastrointestinal cancers in China[J]. Gastroenterology, 2021, 161(6): 1830-1841. e8.
|
[4] |
PETERS A, NAWROT T S, BACCARELLI A A. Hallmarks of environmental insults[J]. Cell, 2021, 184(6): 1455-1468. doi: 10.1016/j.cell.2021.01.043
|
[5] |
ZHANG J, YAO K, YIN J, et al. Exposure to bisphenolic analogues in the sixth total diet study - China, 2016-2019[J]. China CDC Weekly, 2022, 4(9): 180-184. doi: 10.46234/ccdcw2022.044
|
[6] |
生吉萍, 宿文凡, 张靖宇. 食品接触材料中双酚A暴露风险及风险管理[J]. 食品科学技术学报, 2022, 40(1): 167-174. doi: 10.12301/spxb202100147
SHENG J P, SU W F, ZHANG J Y. Risk analysis and management of dietary exposure to bisphenol A from food contact materials[J]. Journal of Food Science and Technology, 2022, 40(1): 167-174 (in Chinese). doi: 10.12301/spxb202100147
|
[7] |
VANDENBERG L N, HAUSER R, MARCUS M, et al. Human exposure to bisphenol A (BPA)[J]. Reproductive Toxicology, 2007, 24(2): 139-177. doi: 10.1016/j.reprotox.2007.07.010
|
[8] |
CHEN D, KANNAN K, TAN H L, et al. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity-a review[J]. Environmental Science & Technology, 2016, 50(11): 5438-5453.
|
[9] |
PARK J C, LEE M C, YOON D S, et al. Effects of bisphenol A and its analogs bisphenol F and S on life parameters, antioxidant system, and response of defensome in the marine rotifer Brachionus koreanus[J]. Aquatic Toxicology, 2018, 199: 21-29. doi: 10.1016/j.aquatox.2018.03.024
|
[10] |
XIA Z N, LV C, ZHANG Y, et al. Associations of exposure to bisphenol A and its substitutes with neurodevelopmental outcomes among infants at 12 months of age: A cross-sectional study[J]. Chemosphere, 2023, 341: 139973. doi: 10.1016/j.chemosphere.2023.139973
|
[11] |
BIGAMBO F M, WANG D D, SUN J, et al. Association between urinary BPA substitutes and precocious puberty among girls: A single-exposure and mixed exposure approach from a Chinese case-control study[J]. Toxics, 2023, 11(11): 905. doi: 10.3390/toxics11110905
|
[12] |
YUAN S F, LIU Z H, LIAN H X, et al. Simultaneous determination of estrogenic odorant alkylphenols, chlorophenols, and their derivatives in water using online headspace solid phase microextraction coupled with gas chromatography-mass spectrometry[J]. Environmental Science and Pollution Research, 2016, 23(19): 19116-19125. doi: 10.1007/s11356-016-7107-1
|
[13] |
HUANG R P, LIU Z H, YUAN S F, et al. Worldwide human daily intakes of bisphenol A (BPA) estimated from global urinary concentration data (2000-2016) and its risk analysis[J]. Environmental Pollution, 2017, 230: 143-152. doi: 10.1016/j.envpol.2017.06.026
|
[14] |
NI L, ZHONG J, CHI H, et al. Recent advances in sources, migration, public health, and surveillance of bisphenol A and its structural analogs in canned foods[J]. Foods, 2023, 12(10): 1989. doi: 10.3390/foods12101989
|
[15] |
NADERI M, WONG M Y L, GHOLAMI F. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults[J]. Aquatic Toxicology, 2014, 148: 195-203. doi: 10.1016/j.aquatox.2014.01.009
|
[16] |
SHI J C, YANG Y J, ZHANG J, et al. Uptake, depuration and bioconcentration of bisphenol AF (BPAF) in whole-body and tissues of zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2016, 132: 339-344. doi: 10.1016/j.ecoenv.2016.05.025
|
[17] |
CAO X L, KOSARAC I, POPOVIC S, et al. LC-MS/MS analysis of bisphenol S and five other bisphenols in total diet food samples[J]. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2019, 36(11): 1740-1747.
|
[18] |
LIU J C, ZHANG L Y, LU G H, et al. Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment - A review[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111481. doi: 10.1016/j.ecoenv.2020.111481
|
[19] |
GEENS T, AERTS D, BERTHOT C, et al. A review of dietary and non-dietary exposure to bisphenol-A[J]. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2012, 50(10): 3725-3740. doi: 10.1016/j.fct.2012.07.059
|
[20] |
LIAO C Y, KANNAN K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure[J]. Journal of Agricultural and Food Chemistry, 2013, 61(19): 4655-4662. doi: 10.1021/jf400445n
|
[21] |
ALABI A, CABALLERO-CASERO N, RUBIO S. Quick and simple sample treatment for multiresidue analysis of bisphenols, bisphenol diglycidyl ethers and their derivatives in canned food prior to liquid chromatography and fluorescence detection[J]. Journal of Chromatography. A, 2014, 1336: 23-33. doi: 10.1016/j.chroma.2014.02.008
|
[22] |
CACHO J I, CAMPILLO N, VIÑAS P, et al. Stir bar sorptive extraction coupled to gas chromatography-mass spectrometry for the determination of bisphenols in canned beverages and filling liquids of canned vegetables[J]. Journal of Chromatography. A, 2012, 1247: 146-153. doi: 10.1016/j.chroma.2012.05.064
|
[23] |
CUNHA S C, ALMEIDA C, MENDES E, et al. Simultaneous determination of bisphenol A and bisphenol B in beverages and powdered infant formula by dispersive liquid-liquid micro-extraction and heart-cutting multidimensional gas chromatography-mass spectrometry[J]. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2011, 28(4): 513-526.
|
[24] |
LIAO C Y, KANNAN K. A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China[J]. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2014, 31(2): 319-329.
|
[25] |
YAO K, ZHANG J, YIN J, et al. Bisphenol A and its analogues in Chinese total diets: Contaminated levels and risk assessment[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020: 8822321.
|
[26] |
GEUEKE B, GROH K J, MAFFINI M V, et al. Systematic evidence on migrating and extractable food contact chemicals: Most chemicals detected in food contact materials are not listed for use[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(28): 9425-9435. doi: 10.1080/10408398.2022.2067828
|
[27] |
LU L P, ZHAN T J, MA M, et al. Thyroid disruption by bisphenol S analogues via thyroid hormone receptor β: in vitro , in vivo , and molecular dynamics simulation study[J]. Environmental Science & Technology, 2018, 52(11): 6617-6625.
|
[28] |
CAO L Y, REN X M, LI C H, et al. Bisphenol AF and bisphenol B exert higher estrogenic effects than bisphenol A via G protein-coupled estrogen receptor pathway[J]. Environmental Science & Technology, 2017, 51(19): 11423-11430.
|
[29] |
WANG Z, LIU H Y, LIU S J. Low-dose bisphenol A exposure: A seemingly instigating carcinogenic effect on breast cancer[J]. Advanced Science, 2016, 4(2): 1600248.
|
[30] |
WINKLER J, LIU P Y, PHONG K, et al. Bisphenol A replacement chemicals, BPF and BPS, induce protumorigenic changes in human mammary gland organoid morphology and proteome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(11): e2115308119.
|
[31] |
任志华, 杨晓溪, 孙振东, 等. 环境内分泌干扰物对雌激素受体表达与转录激活的调控效应及分析技术[J]. 化学进展, 2022, 34(10): 2121-2133. doi: 10.7536/PC220215
REN Z H, YANG X X, SUN Z D, et al. Regulation of environmental endocrine disrupting chemicals on the expressions and transactivation of estrogen receptors and the related analytical techniques[J]. Progress in Chemistry, 2022, 34(10): 2121-2133 (in Chinese). doi: 10.7536/PC220215
|
[32] |
YANAGISAWA R, KOIKE E, WIN-SHWE T T, et al. Effects of oral exposure to low-dose bisphenol S on allergic asthma in mice[J]. International Journal of Molecular Sciences, 2022, 23(18): 10790. doi: 10.3390/ijms231810790
|
[33] |
YANAGISAWA R, KOIKE E, WIN-SHWE T T, et al. Oral exposure to low dose bisphenol A aggravates allergic airway inflammation in mice[J]. Toxicology Reports, 2019, 6: 1253-1262. doi: 10.1016/j.toxrep.2019.11.012
|
[34] |
GEBRU Y A, PANG M G. Modulatory effects of bisphenol A on the hepatic immune response[J]. Environmental Pollution, 2023, 336: 122430. doi: 10.1016/j.envpol.2023.122430
|
[35] |
MENARD S, GUZYLACK-PIRIOU L, LEVEQUE M, et al. Food intolerance at adulthood after perinatal exposure to the endocrine disruptor bisphenol A[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2014, 28(11): 4893-4900. doi: 10.1096/fj.14-255380
|
[36] |
MÉNARD S, GUZYLACK-PIRIOU L, LENCINA C, et al. Perinatal exposure to a low dose of bisphenol A impaired systemic cellular immune response and predisposes young rats to intestinal parasitic infection[J]. PLoS One, 2014, 9(11): e112752. doi: 10.1371/journal.pone.0112752
|
[37] |
MALAISÉ Y, MENARD S, CARTIER C, et al. Gut dysbiosis and impairment of immune system homeostasis in perinatally-exposed mice to Bisphenol A precede obese phenotype development[J]. Scientific Reports, 2017, 7: 14472. doi: 10.1038/s41598-017-15196-w
|
[38] |
MALAISÉ Y, MÉNARD S, CARTIER C, et al. Consequences of bisphenol a perinatal exposure on immune responses and gut barrier function in mice[J]. Archives of Toxicology, 2018, 92(1): 347-358. doi: 10.1007/s00204-017-2038-2
|
[39] |
MALAISÉ Y, LENCINA C, CARTIER C, et al. Perinatal oral exposure to low doses of bisphenol A, S or F impairs immune functions at intestinal and systemic levels in female offspring mice[J]. Environmental Health: a Global Access Science Source, 2020, 19(1): 93.
|
[40] |
BRANISTE V, JOUAULT A, GAULTIER E, et al. Impact of oral bisphenol A at reference doses on intestinal barrier function and sex differences after perinatal exposure in rats[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1): 448-453.
|
[41] |
FENG L, CHEN S J, ZHANG L J, et al. Bisphenol A increases intestinal permeability through disrupting intestinal barrier function in mice[J]. Environmental Pollution, 2019, 254(Pt A): 112960.
|
[42] |
ZHU M, WEI R G, LI Y Y, et al. Bisphenol chemicals disturb intestinal homeostasis via Notch/Wnt signaling and induce mucosal barrier dysregulation and inflammation[J]. The Science of the Total Environment, 2022, 828: 154444. doi: 10.1016/j.scitotenv.2022.154444
|
[43] |
MARTEL J, CHANG S H, KO Y F, et al. Gut barrier disruption and chronic disease[J]. Trends in Endocrinology and Metabolism: TEM, 2022, 33(4): 247-265. doi: 10.1016/j.tem.2022.01.002
|
[44] |
LINARES R, FERNÁNDEZ M F, GUTIÉRREZ A, et al. Endocrine disruption in Crohn’s disease: Bisphenol A enhances systemic inflammatory response in patients with gut barrier translocation of dysbiotic microbiota products[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2021, 35(7): e21697.
|
[45] |
LAI K P, CHUNG Y T, LI R, et al. Bisphenol A alters gut microbiome: Comparative metagenomics analysis[J]. Environmental Pollution, 2016, 218: 923-930. doi: 10.1016/j.envpol.2016.08.039
|
[46] |
DeLUCA J A, ALLRED K F, MENON R, et al. Bisphenol-a alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis[J]. Experimental Biology and Medicine, 2018, 243(10): 864-875. doi: 10.1177/1535370218782139
|
[47] |
ESTRELA A B, ABRAHAM W R. Adenosine in the inflamed gut: A Janus faced compound[J]. Current Medicinal Chemistry, 2011, 18(18): 2791-2815. doi: 10.2174/092986711796011274
|
[48] |
ZHAO H D, LIU M, LV Y B, et al. Dose-response metabolomics and pathway sensitivity to map molecular cartography of bisphenol A exposure[J]. Environment International, 2022, 158: 106893. doi: 10.1016/j.envint.2021.106893
|
[49] |
MONTES-GRAJALES D, OLIVERO-VERBEL J. Computer-aided identification of novel protein targets of bisphenol A[J]. Toxicology Letters, 2013, 222(3): 312-320. doi: 10.1016/j.toxlet.2013.08.010
|
[50] |
MU X Y, QI S Z, WANG H, et al. Bisphenol analogues induced metabolic effects through eliciting intestinal cell heterogeneous response[J]. Environment International, 2022, 165: 107287. doi: 10.1016/j.envint.2022.107287
|
[51] |
CHASSAING B, AITKEN J D, MALLESHAPPA M, et al. Dextran sulfate sodium (DSS)-induced colitis in mice[J]. Current Protocols in Immunology, 2014, 104: 15.25. 1-15.2515. 25.14.
|
[52] |
JIN H B, ZHU J, CHEN Z J, et al. Occurrence and partitioning of bisphenol analogues in adults' blood from China[J]. Environmental Science & Technology, 2018, 52(2): 812-820.
|
[53] |
WELIHINDA AA, KAUR M, GREENE K, et al. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias[J]. Cell Signal, 2016, 28(6): 552-560. doi: 10.1016/j.cellsig.2016.02.010
|