[1] |
CNESA. CNESA重磅发布: 2023上半年储能数据一览, 产量与项目规模齐升[EB/OL]. (2023-08)[2024-01-11]. http://www.cnesa.org/information/detail/?column_id=1&id=5693.
|
[2] |
诸海滨. 新型储能百花齐放正当时, 北交所电池及系统集成有优势[EB/OL]. (2023-07)[2024-03-22]. https://pdf.dfcfw.com/pdf/H3_AP202307251592613973_1.pdf?1690291444000.pdf.
|
[3] |
赵光金, 李博文, 胡玉霞, 等. 退役动力电池梯次利用技术及工程应用概述[J]. 储能科学与技术, 2023, 12(7): 2319-2332.
|
[4] |
吴奔奔, 余海军, 谢英豪, 等. 基于退役量预测下动力电池梯次与循环利用碳足迹分析[J]. 环境工程, 2023, 41(S2): 807-811+818.
|
[5] |
赖志颖, 赖文斌, 林楚园, 等. 退役动力电池回收利用的现状及碳核算研究进展[J]. 过程工程学报, 2023: 1-12.
|
[6] |
张川, 田雨鑫, 崔梦雨. 电动汽车动力电池制造商混合渠道回收模式选择与碳减排决策[J]. 中国管理科学, 2024, 32(6): 184-195.
|
[7] |
CHEN W H, HSIEH I Y L. Techno-economic analysis of lithium-ion battery price reduction considering carbon footprint based on life cycle assessment[J]. Journal of Cleaner Production, 2023, 425: 139045. doi: 10.1016/j.jclepro.2023.139045
|
[8] |
JASPER F B, SPÄTHE J, BAUMANN M, et al. Life cycle assessment (LCA) of a battery home storage system based on primary data[J]. Journal of Cleaner Production, 2022, 366: 132899. doi: 10.1016/j.jclepro.2022.132899
|
[9] |
HAN X, LI Y, NIE L, et al. Comparative life cycle greenhouse gas emissions assessment of battery energy storage technologies for grid applications[J]. Journal of Cleaner Production, 2023, 392: 136251. doi: 10.1016/j.jclepro.2023.136251
|
[10] |
贾志杰, 高峰, 杜世伟, 等. 磷酸铁锂电池不同应用场景的生命周期评价[J]. 中国环境科学, 2022, 42(4): 1975-1984. doi: 10.3969/j.issn.1000-6923.2022.04.055
|
[11] |
KAMATH D, ARSENAULT R, KIM H C, et al. Economic and environmental feasibility of second-life lithium-ion batteries as fast-charging energy storage[J]. Environmental Science & Technology, 2020, 54(11): 6878-6887.
|
[12] |
KAMATH D, SHUKLA S, ARSENAULT R, et al. Evaluating the cost and carbon footprint of second-life electric vehicle batteries in residential and utility-level applications[J]. Waste Management, 2020, 113: 497-507. doi: 10.1016/j.wasman.2020.05.034
|
[13] |
刘博, 岳波, 孟棒棒, 等. 基于全生命周期方法的麻城市密集型村镇生活垃圾处理模式评价[J]. 环境工程学报, 2023, 17(9): 3005-3014. doi: 10.12030/j.cjee.202305068
|
[14] |
YUDHISTIRA R, KHATIWADA D, SANCHEZ F. A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage[J]. Journal of Cleaner Production, 2022, 358: 131999. doi: 10.1016/j.jclepro.2022.131999
|
[15] |
FAN T, LIANG W, GUO W, et al. Life cycle assessment of electric vehicles’ lithium-ion batteries reused for energy storage[J]. Journal of Energy Storage, 2023, 71: 108126. doi: 10.1016/j.est.2023.108126
|
[16] |
LE VARLET T, SCHMIDT O, GAMBHIR A, et al. Comparative life cycle assessment of lithium-ion battery chemistries for residential storage[J]. Journal of Energy Storage, 2020, 28: 101230. doi: 10.1016/j.est.2020.101230
|
[17] |
RICHA K, BABBITT C W, NENADIC N G, et al. Environmental trade-offs across cascading lithium-ion battery life cycles[J]. The International Journal of Life Cycle Assessment, 2017, 22(1): 66-81. doi: 10.1007/s11367-015-0942-3
|
[18] |
YANG J, GU F, GUO J. Environmental feasibility of secondary use of electric vehicle lithium-ion batteries in communication base stations[J]. Resources, Conservation and Recycling, 2020, 156.
|
[19] |
张慧, 池涌, 王立贤, 等. 典型厨余垃圾处置利用技术的环境与㶲生命周期评价[J]. 环境工程学报, 2022, 16(6): 2088-2098. doi: 10.12030/j.cjee.202112097
|
[20] |
赵伟, 袁锡莲, 周宜行, 等. 考虑运行寿命内经济性最优的梯次电池储能系统容量配置方法[J]. 电力系统保护与控制, 2021, 49(12): 16-24.
|
[21] |
HAN X, OUYANG M, LU L, et al. A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation[J]. Journal of Power Sources, 2014, 268: 658-669. doi: 10.1016/j.jpowsour.2014.06.111
|
[22] |
LI X, KANG J, YANG Y, et al. A study on capacity and power fading characteristics of Li(Ni1/3Co1/3Mn1/3)O2-based lithium-ion batteries[J]. Ionics, 2016, 22(11): 2027-2036. doi: 10.1007/s11581-016-1735-9
|
[23] |
鑫椤锂电. 从技术、成本、市场三方面来看, 储能领域为什么磷酸铁锂电池将取代铅酸与三元电池[EB/OL]. (2020-07)[2024-03-04]. http://www.icbattery.com/news/show-htm-itemid-36378.html.
|
[24] |
YANG J, WEIL M, GU F. Environmental-economic analysis of the secondary use of electric vehicle batteries in the load shifting of communication base stations: A case study in China[J]. Journal of Energy Storage, 2022, 55: 105823. doi: 10.1016/j.est.2022.105823
|
[25] |
TIAN X, PENG F, XIE J, et al. Agent-based modeling for an end-of-life power battery cross-regional recycling system and subregional policy analysis: A case study in China[J]. Journal of Cleaner Production, 2024, 441: 141054. doi: 10.1016/j.jclepro.2024.141054
|
[26] |
TIAN X, TAN H, XIE J, et al. Design and simulation of a cross-regional collaborative recycling system for secondary resources: A case of lead-acid batteries[J]. Journal of Environmental Management, 2023, 348: 119181. doi: 10.1016/j.jenvman.2023.119181
|
[27] |
GEIDCO. 中国能源变革转型与“十四五”电力发展[EB/OL]. [2024-03-21]. https://www.geidco.org.cn/html/qqnyhlw/zt20200731/index.html.
|
[28] |
孟星宇, 宗宇航, 张西华, 等. 中国镍资源物质流动与碳排放分析[J/OL]. 化工进展, 1-16. [2024-05-27]. https://doi.org/10.16085/j.issn.1000-6613.2023-1875.
|
[29] |
韩见, 陈其慎, 杨雪松, 等. 钴资源现状及未来5-10年供需形势分析[J]. 中国地质, 2023, 50(3): 743-755. doi: 10.12029/gc20220918003
|
[30] |
WANG F, LONG G, MA K, et al. Recyling manganese-rich electrolytic residues: a review[J]. Environmental Chemistry Letters, 2023, 21(4): 2251-2284. doi: 10.1007/s10311-023-01595-1
|