[1] |
GADIPELLY C, PÉREZ-GONZÁLEZ A, YADAV G D, et al. Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse[J]. Industrial & Engineering Chemistry Research, 2014, 53(29): 11571-11592.
|
[2] |
ENICK O V, MOORE M M. Assessing the assessments: Pharmaceuticals in the environment[J]. Environmental Impact Assessment Review, 2007, 27(8): 707-729. doi: 10.1016/j.eiar.2007.01.001
|
[3] |
ENIOLA J O, KUMAR R, BARAKAT M A, et al. A review on conventional and advanced hybrid technologies for pharmaceutical wastewater treatment[J]. Journal of Cleaner Production, 2022, 356: 131826. doi: 10.1016/j.jclepro.2022.131826
|
[4] |
HEBA G, ELENA K, JOHN H, et al. Insights into current physical, chemical and hybrid technologies used for the treatment of wastewater contaminated with pharmaceuticals[J]. Journal of Cleaner Production, 2022, 361: 132079. doi: 10.1016/j.jclepro.2022.132079
|
[5] |
JI J, KAKADE A, YU Z, et al. Anaerobic membrane bioreactors for treatment of emerging contaminants: A review[J]. Journal of Environmental Management, 2020, 270: 110913. doi: 10.1016/j.jenvman.2020.110913
|
[6] |
MARTÍNEZ-ALCALÁ I, PELLICER-MARTÍNEZ F, FERNÁNDEZ-LÓPEZ C. Pharmaceutical grey water footprint: Accounting, influence of wastewater treatment plants and implications of the reuse[J]. Water Research, 2018, 135: 278-287. doi: 10.1016/j.watres.2018.02.033
|
[7] |
SHI X, LEONG K Y, NG H Y. Anaerobic treatment of pharmaceutical wastewater: A critical review[J]. Bioresource Technology, 2017, 245: 1238-1244. doi: 10.1016/j.biortech.2017.08.150
|
[8] |
CUI J, FU L, TANG B, et al. Occurrence, ecotoxicological risks of sulfonamides and their acetylated metabolites in the typical wastewater treatment plants and receiving rivers at the Pearl River Delta[J]. Science of the Total Environment, 2020, 709: 136192. doi: 10.1016/j.scitotenv.2019.136192
|
[9] |
TANG T, LIU M, CHEN Y, et al. Influence of sulfamethoxazole on anaerobic digestion: Methanogenesis, degradation mechanism and toxicity evolution[J]. Journal of Hazardous Materials, 2022, 431: 128540. doi: 10.1016/j.jhazmat.2022.128540
|
[10] |
ZHI S, ZHANG K. Antibiotic residues may stimulate or suppress methane yield and microbial activity during high-solid anaerobic digestion[J]. Chemical Engineering Journal, 2019, 359: 1303-1315. doi: 10.1016/j.cej.2018.11.050
|
[11] |
BERTONE E, CHANG C, THIEL P, et al. Analysis and modelling of powdered activated carbon dosing for taste and odour removal[J]. Water Research, 2018, 139: 321-328. doi: 10.1016/j.watres.2018.04.023
|
[12] |
ATALLAH AL-ASAD H, PARNISKE J, QIAN J, et al. Development and application of a predictive model for advanced wastewater treatment by adsorption onto powdered activated carbon[J]. Water Research, 2022, 217: 118427. doi: 10.1016/j.watres.2022.118427
|
[13] |
MA J, WEI H, SU Y, et al. Powdered activated carbon facilitates methane productivity of anaerobic co-digestion via acidification alleviating: Microbial and metabolic insights[J]. Bioresource Technology, 2020, 313: 123706. doi: 10.1016/j.biortech.2020.123706
|
[14] |
XIE Z, CAO Q, CHEN Y, et al. The biological and abiotic effects of powdered activated carbon on the anaerobic digestion performance of cornstalk[J]. Bioresource Technology, 2022, 343: 126072. doi: 10.1016/j.biortech.2021.126072
|
[15] |
LI L, GAO Q, LIU X, et al. Insights into high-solids anaerobic digestion of food waste enhanced by activated carbon via promoting direct interspecies electron transfer[J]. Bioresource Technology, 2022, 351: 127008. doi: 10.1016/j.biortech.2022.127008
|
[16] |
YOUQIAN X, LIANGWEI D, HONGNAN Y, et al. Alleviation of ammonia inhibition in dry anaerobic digestion of swine manure[J]. Energy, 2022, 253: 124149. doi: 10.1016/j.energy.2022.124149
|
[17] |
YAN W, ZHANG L, WIJAYA S M, et al. Unveiling the role of activated carbon on hydrolysis process in anaerobic digestion[J]. Bioresource Technology, 2020, 296: 122366. doi: 10.1016/j.biortech.2019.122366
|
[18] |
CHEN Y, HE S, ZHOU M, et al. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Frontiers of Environmental Science & Engineering, 2018, 12: 1-12.
|
[19] |
CETECIOGLU Z, INCE B, GROS M, et al. Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater[J]. Science of the Total Environment, 2015, 536: 667-674. doi: 10.1016/j.scitotenv.2015.07.139
|
[20] |
DENG H, REN H, FAN J, et al. Membrane fouling mitigation by coagulation and electrostatic repulsion using an electro-AnMBR in kitchen wastewater treatment[J]. Water Research, 2022, 222: 118883. doi: 10.1016/j.watres.2022.118883
|
[21] |
BELLATON S, GUÉRIN S, PAUTREMAT N, et al. Early assessment of a rapid alternative method for the estimation of the biomethane potential of sewage sludge[J]. Bioresource Technology, 2016, 206: 279-284. doi: 10.1016/j.biortech.2016.01.139
|
[22] |
XU S, HAN R, ZHANG Y, et al. Differentiated stimulating effects of activated carbon on methanogenic degradation of acetate, propionate and butyrate[J]. Waste Management, 2018, 76: 394-403. doi: 10.1016/j.wasman.2018.03.037
|
[23] |
GILCREAS F W. Standard methods for the examination of water and waste water[J]. American Journal of Public Health and the Nations Health, 1966, 56(3): 387-388. doi: 10.2105/AJPH.56.3.387
|
[24] |
WANG T, ZHU G, KUANG B, et al. Novel insights into the anaerobic digestion of propionate via syntrophobacter fumaroxidans and geobacter sulfurreducens: Process and mechanism[J]. Water Research, 2021, 200: 117270. doi: 10.1016/j.watres.2021.117270
|
[25] |
XU S, HE C, LUO L, et al. Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester[J]. Bioresource Technology, 2015, 196: 606-612. doi: 10.1016/j.biortech.2015.08.018
|
[26] |
ZHANG J, WANG S, LANG S, et al. Kinetics of combined thermal pretreatment and anaerobic digestion of waste activated sludge from sugar and pulp industry[J]. Chemical Engineering Journal, 2016, 295: 131-138. doi: 10.1016/j.cej.2016.03.028
|
[27] |
LIU Y, LI Y, GAN R, et al. Enhanced biogas production from swine manure anaerobic digestion via in-situ formed graphene in electromethanogenesis system[J]. Chemical Engineering Journal, 2020, 389: 124510. doi: 10.1016/j.cej.2020.124510
|
[28] |
LIU J, WANG L, LU D, et al. Quorum quenching enhanced methane production in anaerobic systems – performance and mechanisms[J]. Water Research, 2023, 235: 119841. doi: 10.1016/j.watres.2023.119841
|
[29] |
CHENG Y, SHI Z, SHI Y, et al. Biochar promoted microbial iron reduction in competition with methanogenesis in anaerobic digestion[J]. Bioresource Technology, 2023, 387: 129561. doi: 10.1016/j.biortech.2023.129561
|
[30] |
SUN W-X, FU S-F, ZHU R, et al. Improved anaerobic digestion efficiency of high-solid sewage sludge by enhanced direct interspecies electron transfer with activated carbon mediator[J]. Bioresource Technology, 2020, 313: 123648. doi: 10.1016/j.biortech.2020.123648
|
[31] |
YUAN X, WANG L, BHAT O M, et al. Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate[J]. Redox Biology, 2018, 16: 21-31. doi: 10.1016/j.redox.2018.02.007
|
[32] |
LI Q, LIU Y, YANG X, et al. Kinetic and thermodynamic effects of temperature on methanogenic degradation of acetate, propionate, butyrate and valerate[J]. Chemical Engineering Journal, 2020, 396: 125366. doi: 10.1016/j.cej.2020.125366
|
[33] |
BILEA F, BRADU C, CICIRMA M, et al. Plasma treatment of sulfamethoxazole contaminated water: Intermediate products, toxicity assessment and potential agricultural reuse[J]. Science of the Total Environment, 2024, 909: 168524. doi: 10.1016/j.scitotenv.2023.168524
|
[34] |
BRAIN R A, RAMIREZ A J, FULTON B A, et al. Herbicidal effects of sulfamethoxazole in Lemna gibba: using p-aminobenzoic acid as a biomarker of effect[J]. Environmental Science & Technology, 2008, 42(23): 8965-8970.
|
[35] |
CETECIOGLU Z, ORHON D. How do sulfamethoxazole and tetracycline affect the utilization of short chain fatty acids under anaerobic conditions?[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1305-1313. doi: 10.1016/j.jece.2018.01.056
|
[36] |
SHI C, WANG K, ZHENG M, et al. The efficiencies and capacities of carbon conversion in fruit and vegetable waste two-phase anaerobic digestion: Ethanol-path vs. butyrate-path[J]. Waste Management, 2021, 126: 737-746. doi: 10.1016/j.wasman.2021.04.010
|
[37] |
YAN X, CHEN L, PENG P, et al. Dual role of birnessite on the modulation of acid production and reinforcement of interspecific electron transfer in anaerobic digestion[J]. Science of the Total Environment, 2024, 906: 167842. doi: 10.1016/j.scitotenv.2023.167842
|
[38] |
XIA A, FENG D, HUANG Y, et al. Activated Carbon Facilitates Anaerobic Digestion of Furfural Wastewater: Effect of Direct Interspecies Electron Transfer[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(25): 8206-8215.
|
[39] |
SHUNAN Z, SHAOQING Z, SUO L, et al. Quorum sensing enhances direct interspecies electron transfer in anaerobic methane production[J]. Environmental Science & Technology, 2024, 58: 6,2891-2901.
|
[40] |
LIKUI F, SHUFEI H, ZHELU G, et al. Mechanisms, performance, and the impact on microbial structure of direct interspecies electron transfer for enhancing anaerobic digestion-A review[J]. Science of the Total Environment, 2023, 862: 160813. doi: 10.1016/j.scitotenv.2022.160813
|
[41] |
WANG M, REN T, YIN M, et al. Enhanced anaerobic wastewater treatment by a binary electroactive material: Pseudocapacitance/conductance-mediated microbial interspecies electron transfer[J]. Environmental Science & Technology, 2023, 57(32): 12072-12082.
|
[42] |
KALKAVAN H, CHEN M J, CRAWFORD J C, et al. Sublethal cytochrome c release generates drug-tolerant persister cells[J]. Cell, 2022, 185(18): 3356-3374. doi: 10.1016/j.cell.2022.07.025
|
[43] |
LIANFU L, MINGWEI W, QILIN Y, et al. Accelerating anaerobic oxidation of methane coupled with extracellular electron transfer to electrodes via magnetite stimulating membrane-bound proteins of anaerobic methanotrophic (ANME) archaea/methanogens[J]. Chemical Engineering Journal, 2023, 462: 142266. doi: 10.1016/j.cej.2023.142266
|
[44] |
YANG B, XU H, LIU Y, et al. Role of GAC-MnO2 catalyst for triggering the extracellular electron transfer and boosting CH4 production in syntrophic methanogenesis[J]. Chemical Engineering Journal, 2020, 383: 123211. doi: 10.1016/j.cej.2019.123211
|
[45] |
ZHANG X, JOYCE G H, LEU A O, et al. Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’[J]. Nature Communications, 2023, 14(1): 6118. doi: 10.1038/s41467-023-41847-w
|
[46] |
ZHU H, HAN Y, MA W, et al. New insights into enhanced anaerobic degradation of coal gasification wastewater (CGW) with the assistance of graphene[J]. Bioresource Technology, 2018, 262: 302-309. doi: 10.1016/j.biortech.2018.04.080
|
[47] |
CHADWICK G L, SKENNERTON C T, LASO-PÉREZ R, et al. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea[J]. PLOS Biology, 2022, 20(1): e3001508. doi: 10.1371/journal.pbio.3001508
|
[48] |
ZHANG J, MAO F, LOH K-C, et al. Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes[J]. Bioresource Technology, 2018, 249: 729-736. doi: 10.1016/j.biortech.2017.10.082
|
[49] |
SCHÖNE C, POEHLEIN A, JEHMLICH N, et al. Deconstructing Methanosarcina acetivorans into an acetogenic archaeon[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(2): e2113853119.
|
[50] |
YE J, YU J, ZHANG Y, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid[J]. Applied Catalysis B: Environment and Energy, 2019, 257: 117916. doi: 10.1016/j.apcatb.2019.117916
|
[51] |
SAINI J, DEERE T M, CHANDERBAN M, et al. Methanosarcina acetivorans[J]. Trends in Microbiology, 2023, 31(3): 320-321. doi: 10.1016/j.tim.2022.10.001
|
[52] |
YI Y, DOLFING J, JIN G, et al. Thermodynamic restrictions determine ammonia tolerance of methanogenic pathways in Methanosarcina barkeri[J]. Water Research, 2023, 232: 119664. doi: 10.1016/j.watres.2023.119664
|
[53] |
YAN S, WANG M, ZHANG S, et al. Fe-doped hydrochar facilitating simultaneous methane production and pharmaceutical and personal care products (PPCPs) degradation in co-anaerobic digestion of municipal sludge and food waste[J]. Chemical Engineering Journal, 2023, 474: 146001. doi: 10.1016/j.cej.2023.146001
|
[54] |
LEE J, KOO T, YULISA A, et al. Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition[J]. Journal of Environmental Management, 2019, 241: 418-426.
|
[55] |
CARNEIRO R B, MUKAEDA C M, SABATINI C A, et al. Influence of organic loading rate on ciprofloxacin and sulfamethoxazole biodegradation in anaerobic fixed bed biofilm reactors[J]. Journal of Environmental Management, 2020, 273: 111170. doi: 10.1016/j.jenvman.2020.111170
|
[56] |
SHEKHURDINA S, ZHURAVLEVA E, KOVALEV A, et al. Comparative effect of conductive and dielectric materials on methanogenesis from highly concentrated volatile fatty acids[J]. Bioresource Technology, 2023, 377: 128966. doi: 10.1016/j.biortech.2023.128966
|
[57] |
NI Z, ZHOU L, LIN Z, et al. Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism[J]. Journal of Hazardous Materials, 2023, 452: 131314. doi: 10.1016/j.jhazmat.2023.131314
|
[58] |
XI C, HAI L, YINGBO D, et al. Mechanisms underlying enhanced bioremediation of sulfamethoxazole and zinc(II) by Bacillus sp. SDB4 immobilized on biochar[J]. Journal of Cleaner Production, 2022, 370: 133483. doi: 10.1016/j.jclepro.2022.133483
|