[1] |
LU Z, LEI L M, LU Y, et al. Phosphorus deficiency stimulates dominance of Cylindrospermopsis through facilitating cylindrospermopsin-induced alkaline phosphatase secretion: Integrating field and laboratory-based evidences[J]. Environmental Pollution, 2021, 290: 117946. doi: 10.1016/j.envpol.2021.117946
|
[2] |
YANG Y M, YU G L, CHEN Y X, et al. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin[J]. Journal of Hazardous Materials, 2021, 406: 124653. doi: 10.1016/j.jhazmat.2020.124653
|
[3] |
雷腊梅, 雷敏婷, 赵莉, 等. 入侵蓝藻—拟柱胞藻的分布特征及生理生态研究进展[J]. 生态环境学报, 2017, 26(03): 531-537.
|
[4] |
JIANG Y, XIAO P, YU G L, et al. Sporadic distribution and distinctive variations of cylindrospermopsin genes in cyanobacterial strains and environmental samples from Chinese freshwater bodies[J]. Applied and Environmental Microbiology, 2014, 80(17): 5219-5230. doi: 10.1128/AEM.00551-14
|
[5] |
LEI L M, PENG L, HUANG X H, et al. Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China[J]. Environmental Monitoring and Assessment, 2014, 186(5): 3079-3090. doi: 10.1007/s10661-013-3602-8
|
[6] |
LEI L M, LEI M T, CHENG N, et al. Nutrient regulation of relative dominance of cylindrospermopsin-producing and non-cylindrospermopsin-producing Raphidiopsis raciborskii[J]. Frontiers in Microbiology, 2021, 12: 793544. doi: 10.3389/fmicb.2021.793544
|
[7] |
薛现光, 方光宏, 邹楚均, 等. 大沙河水库拟柱孢藻昼夜垂直分布特征[J]. 生态学杂志, 2020, 39(7): 2348-2355.
|
[8] |
HENDERSON R, PARSONS S A, JEFFERSON B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae[J]. Water Research, 2008, 42: 1827-1845. doi: 10.1016/j.watres.2007.11.039
|
[9] |
EDZWALD J K. Algae, bubbles, coagulants, and dissolved air flotation[J]. Water Science and Technology, 1993, 27(10): 67-81. doi: 10.2166/wst.1993.0207
|
[10] |
宋金思. 聚合氯化铝混凝去除铜绿微囊藻的实验研究[D]. 湘潭: 湘潭大学, 2011.
|
[11] |
CHEN J J, YRH H H, TSENG I C. Effect of ozone and permanganate on algae coagulation removal-pilot and bench scale tests[J]. Chemosphere, 2009, 74(6): 840-846. doi: 10.1016/j.chemosphere.2008.10.009
|
[12] |
任鹏飞, 蒋白懿, 何南浩, 等. 混凝/预氧化去除微污染水源水中拟柱孢藻的效能[J]. 中国给水排水, 2019, 35(11): 21-25.
|
[13] |
赵春禄, 侯孝来, 孙鹏程. H2O2预氧化颤藻及其复合高岭土除藻性能研究[J]. 环境工程学报, 2011, 5(2): 357-360.
|
[14] |
邱丽佳. H2O2及O3氧化两种典型蓝藻致嗅物质和灭藻效应研究[D]. 北京: 北京建筑大学, 2017.
|
[15] |
陈伯俭. 南水北调(邯郸段)水源水预氧化-强化混凝试验研究[D]. 邯郸: 河北工程大学, 2020.
|
[16] |
李春梅. 预氧化对南方某水库中藻类控制效果的研究[D]. 长沙: 湖南大学, 2018.
|
[17] |
MA J Y, JIA B T, LI S, et al. Enhanced coagulation of covalent composite coagulant with potassium permanganate oxidation for algae laden water treatment: Algae and extracellular organic matter removal[J]. Chemical Engineering Journal Advances, 2023, 13: 100427. doi: 10.1016/j.ceja.2022.100427
|
[18] |
LIN J L, HUANG C, WANG W M. Effect of cell integrity on algal destabilization by oxidation-assisted coagulation[J]. Separation and Purification Technology, 2015, 151: 262-268. doi: 10.1016/j.seppur.2015.07.064
|
[19] |
CAI Q J, GONG S H, SONG K Z, et al. Effective harvesting of Scenedesmus using quaternary ammonium chitosan and xanthan gum: Formation of mega flocs with oppositely charged polyelectrolytes[J]. Journal of Cleaner Production, 2021, 329: 129730. doi: 10.1016/j.jclepro.2021.129730
|
[20] |
凌卫卫. 高温季节深度处理水厂二氧化碳控铝研究[J]. 中国给水排水, 2023, 39(13): 66-70.
|
[21] |
CAI Q J, SONG K Z, TIAN C C, et al. Harvesting of Microcystis from waterbody by flocculation and filtration: the essential role of extracellular organic matters[J]. Journal of Water Process Engineering, 2021, 41: 102053. doi: 10.1016/j.jwpe.2021.102053
|
[22] |
SONG K S, LI L, TEDESCO L, et al. Spectral characterization of colored dissolved organic matter for productive inland waters and its source analysis[J]. Chinese Geographical Science, 2014, 25(3): 295-308.
|
[23] |
CAI Q J, CAI P, XU L, et al. Role of lake dissolved organic matter in cyanobacteria removal by cationic polyacrylamide flocculation and screen filtration[J]. Separation and Purification Technology, 2023, 311: 123350. doi: 10.1016/j.seppur.2023.123350
|
[24] |
JIA P L, ZHOU Y P, ZHANG X F, et al. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H2O2 pre-oxidation enhanced Fe(II) coagulation[J]. Water Research, 2018, 131: 122-130. doi: 10.1016/j.watres.2017.12.020
|
[25] |
MA M, LIU R P, LIU H J, et al. Effects and mechanisms of pre-chlorination on Microcystis aeruginosa removal by alum coagulation: Significance of the released intracellular organic matter[J]. Separation and Purification Technology, 2012, 86: 19-25. doi: 10.1016/j.seppur.2011.10.015
|
[26] |
刘立明, 李丽萍, 黄应平. 高铁酸钾/PAC氧化-混凝去除水体中铜绿微囊藻[J]. 生态科学, 2013, 32(6): 686-691.
|
[27] |
MA M, LIU R P, LIU H J, et al. Chlorination of Microcystis aeruginosa suspension: Cell lysis, toxin release and degradation[J]. Journal of Hazardous Materials, 2012, 217-218: 279-85. doi: 10.1016/j.jhazmat.2012.03.030
|
[28] |
QI J, MA B W, MIAO S Y, et al. Pre-oxidation enhanced cyanobacteria removal in drinking water treatment: A review[J]. Journal of Environment Science (China), 2021, 110: 160-168. doi: 10.1016/j.jes.2021.03.040
|
[29] |
PARK J W, KIM H C, MEYER A S, et al. Influences of NOM composition and bacteriological characteristics on biological stability in a full-scale drinking water treatment plant[J]. Chemosphere, 2016, 160: 189-198. doi: 10.1016/j.chemosphere.2016.06.079
|
[30] |
LIU X L, WANG J Q, LIU T T, et al. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water[J]. Plos One, 2015, 10(6): e0128825. doi: 10.1371/journal.pone.0128825
|
[31] |
ZHANG Y L, ZHOU Y Q, SHI K, et al. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication[J]. Water Research, 2018, 131: 255-263. doi: 10.1016/j.watres.2017.12.051
|
[32] |
邱丽佳. H2O2氧化铜绿微囊藻致嗅物质及灭藻效应研究[J]. 环境科学学报, 2017, 37(3): 954-961.
|
[33] |
ZHOU Y Q, XIAO Q T, YAO X L, et al. Accumulation of terrestrial dissolved organic matter potentially enhances dissolved methane levels in eutrophic Lake Taihu, China[J]. Environment Science Technology, 2018, 52(18): 10297-10306. doi: 10.1021/acs.est.8b02163
|
[34] |
CHEN Y H, YU K F, ZHOU Y Q, et al. Characterizing spatiotemporal variations of chromophoric dissolved organic matter in headwater catchment of a key drinking water source in China[J]. Environmental Science & Pollution Research, 2017, 24(36): 27799-27812.
|
[35] |
SILLANPAA M, NCIBI M C, MATILAINEN A, et al. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review[J]. Chemosphere, 2018, 190: 54-71. doi: 10.1016/j.chemosphere.2017.09.113
|
[36] |
SANO D, ISHIFUJI S, SATO Y, et al. Identification and characterization of coagulation inhibitor proteins derived from cyanobacterium Microcystis aeruginosa[J]. Chemosphere, 2011, 82(8): 1096-1102. doi: 10.1016/j.chemosphere.2010.12.005
|
[37] |
SAFARIKOVA J, BARESOVA M, PIVOKONSKY M, et al. Influence of peptides and proteins produced by cyanobacterium Microcystis aeruginosa on the coagulation of turbid waters[J]. Separation and Purification Technology, 2013, 118: 49-57. doi: 10.1016/j.seppur.2013.06.049
|
[38] |
RAO N R H, GRANVILLE A M, WICH P R, et al. Detailed algal extracellular carbohydrate-protein characterisation lends insight into algal solid-liquid separation process outcomes[J]. Water Research, 2020, 178: 115833. doi: 10.1016/j.watres.2020.115833
|