[1] |
JIANG M, ZHENG X, CHEN Y. Enhancement of denitrification performance with reduction of nitrite accumulation and N2O emission by Shewanella oneidensis MR-1 in microbial denitrifying process[J]. Water Research, 2020, 169: 115242. doi: 10.1016/j.watres.2019.115242
|
[2] |
SHIN K H, CHA D K. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron[J]. Chemosphere, 2008, 72(2): 257-262. doi: 10.1016/j.chemosphere.2008.01.043
|
[3] |
MACKENZIE K, BLEYL S, GEORGI A, et al. Carbo-Iron-An Fe/AC composite-as alternative to nano-iron for groundwater treatment[J]. Water Research, 2012, 46(12): 3817-3826. doi: 10.1016/j.watres.2012.04.013
|
[4] |
XU J, LV X, LI J, et al. Simultaneous adsorption and dechlorination of 2, 4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support[J]. Journal of Hazardous Materials, 2012, 225: 36-45.
|
[5] |
SUN Y, DING C, CHENG W, et al. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280: 399-408. doi: 10.1016/j.jhazmat.2014.08.023
|
[6] |
SU H, FANG Z, TSANG P E, et al. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil[J]. Environmental Pollution, 2016, 214: 94-100. doi: 10.1016/j.envpol.2016.03.072
|
[7] |
SHENG G, TANG Y, LINGHU W, et al. Enhanced immobilization of ReO4− by nanoscale zerovalent iron supported on layered double hydroxide via an advanced XAFS approach: Implications for TcO4− sequestration[J]. Applied Catalysis B-Environmental, 2016, 192: 268-276. doi: 10.1016/j.apcatb.2016.04.001
|
[8] |
OH S Y, SEO Y D, KIM B, et al. Microbial reduction of nitrate in the presence of zero-valent iron and biochar[J]. Bioresource Technology, 2016, 200: 891-896. doi: 10.1016/j.biortech.2015.11.021
|
[9] |
代快, 李江舟, 蒲天燕, 等. 施用生物炭对3种烟用农药残留的影响[J]. 中国农业科技导报, 2019, 21(8): 99-106.
|
[10] |
YU T, WANG L, MA F, et al. A bio-functions integration microcosm: Self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms[J]. Journal of Hazardous Materials, 2020, 384: 121326. doi: 10.1016/j.jhazmat.2019.121326
|
[11] |
ZHAO L, XIAO D, LIU Y, et al. Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater[J]. Water Research, 2020, 172: 115494. doi: 10.1016/j.watres.2020.115494
|
[12] |
ZHANG Y, ZHANG Z, CHEN Y. Biochar mitigates N2O emission of microbial denitrification through modulating carbon metabolism and allocation of reducing power[J]. Environmental Science & Technology, 2021, 55(12): 8068-8078.
|
[13] |
QI X, YIN H, ZHU M, et al. Understanding the role of biochar in affecting BDE-47 biodegradation by Pseudomonas plecoglossicida: An integrated analysis using chemical, biological, and metabolomic approaches[J]. Water Research, 2022, 220: 118679. doi: 10.1016/j.watres.2022.118679
|
[14] |
陈慧, 马徐, 王海波, 等. 供水PE和PPR塑料管内表面生物膜群落组成及其代谢特征[J]. 环境科学学报, 2023, 43(12): 287-295.
|
[15] |
LI B, YANG L, WANG C Q, et al. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes[J]. Chemosphere, 2017, 175: 332-340. doi: 10.1016/j.chemosphere.2017.02.061
|
[16] |
THI HANH N, THI HUONG P, HONG THAM NGUYEN T, et al. Synthesis of iron-modified biochar derived from rice straw and its application to Arsenic Removal[J]. Journal of Chemistry, 2019, 2019: 1-8.
|
[17] |
WAN Z, LI K. Effect of pre-pyrolysis mode on simultaneous introduction of nitrogen/oxygen-containing functional groups into the structure of bagasse-based mesoporous carbon and its influence on Cu(II) adsorption[J]. Chemosphere, 2018, 194: 370-380. doi: 10.1016/j.chemosphere.2017.11.181
|
[18] |
DAI X H, FAN H X, YI C Y, et al. Solvent-free synthesis of a 2D biochar stabilized nanoscale zerovalent iron composite for the oxidative degradation of organic pollutants[J]. Journal of Materials Chemistry A, 2019, 7(12): 6849-6858. doi: 10.1039/C8TA11661J
|
[19] |
WU L, LIN Q, FU H, et al. Role of sulfide-modified nanoscale zero-valent iron on carbon nanotubes in nonradical activation of peroxydisulfate[J]. Journal of Hazardous Materials, 2022, 422: 124969.
|
[20] |
YANCHUS D A, KIRK D W, JIA C Q. Investigating the effects of biochar electrode macrostructure and dimension on electrical double-layer capacitor performance[J]. Journal of the Electrochemical Society, 2018, 165(2): A305-A313. doi: 10.1149/2.1151802jes
|
[21] |
邓宇. 生物炭基材料的制备及其电化学性能研究[D]. 长沙: 湘潭大学, 2020.
|
[22] |
FENG L, YANG J, MA F, et al. Biological stimulation with Fe(III) promotes the growth and aerobic denitrification of Pseudomonas stutzeri T13[J]. Science of the Total Environment, 2021, 776: 145939. doi: 10.1016/j.scitotenv.2021.145939
|
[23] |
SCHENCK C A, MAEDA H A. Tyrosine biosynthesis, metabolism, and catabolism in plants[J]. Phytochemistry, 2018, 149: 82-102. doi: 10.1016/j.phytochem.2018.02.003
|
[24] |
WANG J, YIN J, PENG D, et al. 4-Nitrophenol at environmentally relevant concentrations mediates reproductive toxicity in Caenorhabditis elegans via metabolic disorders-induced estrogen signaling pathway[J]. Journal of Environmental Sciences, 2025, 147: 244-258. doi: 10.1016/j.jes.2023.09.032
|
[25] |
REITZER L. Biosynthesis of glutamate, aspartate, asparagine, l-alanine, and d-alanine[J]. EcoSal Plus, 2004, 1(1).
|
[26] |
曲俊泽, 陈天华, 姚明东, 等. ABC转运蛋白及其在合成生物学中的应用[J]. 生物工程学报, 2020, 36(9): 1754-1766.
|