[1] |
姜菁秋, 许宜平, 赵高峰. 新污染物有机磷酸酯生物地球化学过程的研究进展[J]. 环境化学, 2023, 42(8): 2525-2538. doi: 10.7524/j.issn.0254-6108.2022030703
JIANG J Q, XU Y P, ZHAO G F. Research progress on biogeochemical process of emerging contaminants organophosphate esters[J]. Environmental Chemistry, 2023, 42(8): 2525-2538 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022030703
|
[2] |
FU J, FU K H, HU B Y, et al. Source identification of organophosphate esters through the profiles in proglacial and ocean sediments from Ny-Ålesund, the Arctic[J]. Environmental Science & Technology, 2023, 57(5): 1919-1929.
|
[3] |
ZHU H K, AL-BAZI M M, KUMOSANI T A, et al. Occurrence and profiles of organophosphate esters in infant clothing and raw textiles collected from the United States[J]. Environmental Science & Technology Letters, 2020, 7(6): 415-420.
|
[4] |
MÖLLER A, XIE Z Y, CABA A, et al. Organophosphorus flame retardants and plasticizers in the atmosphere of the North Sea[J]. Environmental Pollution, 2011, 159(12): 3660-3665. doi: 10.1016/j.envpol.2011.07.022
|
[5] |
FU J, FU K H, CHEN Y, et al. Long-range transport, trophic transfer, and ecological risks of organophosphate esters in remote areas[J]. Environmental Science & Technology, 2021, 55(15): 10192-10209.
|
[6] |
高立红, 厉文辉, 史亚利, 等. 有机磷酸酯阻燃剂分析方法及其污染现状研究进展[J]. 环境化学, 2014, 33(10): 1750-1761. doi: 10.7524/j.issn.0254-6108.2014.10.004
GAO L H, LI W H, SHI Y L, et al. Analytical methods and pollution status of organophosphate flame retardants[J]. Environmental Chemistry, 2014, 33(10): 1750-1761 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.10.004
|
[7] |
廖梓聪, 李会茹, 杨愿愿, 等. 有机磷酸酯(OPEs)的环境污染特征、毒性和分析方法研究进展[J]. 环境化学, 2022, 41(4): 1193-1215. doi: 10.7524/j.issn.0254-6108.2020121601
LIAO Z C, LI H R, YANG Y Y, et al. The pollution characteristics, toxicity and analytical methods of organophosphate esters(OPEs) in environments: A review[J]. Environmental Chemistry, 2022, 41(4): 1193-1215 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020121601
|
[8] |
生态环境部. 优先控制化学品名录 (第二批)[S]. 2020.
Ministry of Ecology and Environment of the People's Republic of China. List of priority controlled chemicals (second batch)[S]. 2020(in Chinese).
|
[9] |
XIE Z Y, WANG P, WANG X, et al. Organophosphate ester pollution in the oceans[J]. Nature Reviews Earth & Environment, 2022, 3(5): 309-322.
|
[10] |
PANTELAKI I, VOUTSA D. Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment[J]. Science of the Total Environment, 2019, 649: 247-263. doi: 10.1016/j.scitotenv.2018.08.286
|
[11] |
IQBAL M, SYED J H, KATSOYIANNIS A, et al. Legacy and emerging flame retardants (FRs) in the freshwater ecosystem: A review[J]. Environmental Research, 2017, 152: 26-42. doi: 10.1016/j.envres.2016.09.024
|
[12] |
SUTTON R, CHEN D, SUN J, et al. Characterization of brominated, chlorinated, and phosphate flame retardants in San Francisco Bay, an urban estuary[J]. Science of the Total Environment, 2019, 652: 212-223. doi: 10.1016/j.scitotenv.2018.10.096
|
[13] |
AZNAR-ALEMANY O, AMINOT Y, VILÀ-CANO J, et al. Halogenated and organophosphorus flame retardants in European aquaculture samples[J]. Science of the Total Environment, 2018, 612: 492-500. doi: 10.1016/j.scitotenv.2017.08.199
|
[14] |
DU R, FENG X X, WANG P, et al. Assessing the occurrence and sources of synthetic additive pollutants in lake sediments using fecal and sewage markers[J]. Environmental Pollution, 2023, 331: 121942. doi: 10.1016/j.envpol.2023.121942
|
[15] |
FU J, FU K H, GAO K, et al. Occurrence and trophic magnification of organophosphate esters in an Antarctic ecosystem: Insights into the shift from legacy to emerging pollutants[J]. Journal of Hazardous Materials, 2020, 396: 122742. doi: 10.1016/j.jhazmat.2020.122742
|
[16] |
CAO D D, GUO J H, WANG Y W, et al. Organophosphate esters in sediment of the great lakes[J]. Environmental Science & Technology, 2017, 51(3): 1441-1449.
|
[17] |
XING L Q, ZHANG Q, SUN X, et al. Occurrence, distribution and risk assessment of organophosphate esters in surface water and sediment from a shallow freshwater Lake, China[J]. Science of the Total Environment, 2018, 636: 632-640. doi: 10.1016/j.scitotenv.2018.04.320
|
[18] |
YE L J, MENG W K, HUANG J A, et al. Establishment of a target, suspect, and functional group-dependent screening strategy for organophosphate esters (OPEs): “into the unknown” of OPEs in the sediment of Taihu Lake, China[J]. Environmental Science & Technology, 2021, 55(9): 5836-5847.
|
[19] |
高蕴语, 董靖, 代然, 等. 洞庭湖水和沉积物中有机磷酸酯的分布特征及风险评估[J]. 环境科学, 2024, 45(7): 3919-3929.
GAO Y Y, DONG J, DAI R, et al. Distribution characteristics and risk assessment of organophosphates in water and sediment in Dongting Lake[J]. Environmental Science, 2024, 45(7): 3919-3929 (in Chinese).
|
[20] |
LEE S, CHO H J, CHOI W, et al. Organophosphate flame retardants (OPFRs) in water and sediment: Occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea[J]. Marine Pollution Bulletin, 2018, 130: 105-112. doi: 10.1016/j.marpolbul.2018.03.009
|
[21] |
CHEN M H, LIU Y H, GUO R X, et al. Spatiotemporal distribution and risk assessment of organophosphate esters in sediment from Taihu Lake, China[J]. Environmental Science and Pollution Research, 2018, 25(14): 13787-13795. doi: 10.1007/s11356-018-1434-3
|
[22] |
HUANG J A, YE L J, FANG M L, et al. Industrial production of organophosphate flame retardants (OPFRs): Big knowledge gaps need to be filled?[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(5): 809-818. doi: 10.1007/s00128-021-03454-7
|
[23] |
WANG S, QIAN J S, ZHANG B L, et al. Unveiling the occurrence and potential ecological risks of organophosphate esters in municipal wastewater treatment plants across China[J]. Environmental Science & Technology, 2023, 57(5): 1907-1918.
|
[24] |
XU Y W, ZENG L Z, TAO Y F, et al. Release of additives from agricultural plastic films in water: Experiment and modeling[J]. Environmental Science & Technology, 2023, 57(27): 10053-10061.
|
[25] |
GONG X Y, ZHANG W J, ZHANG S Y, et al. Organophosphite antioxidants in mulch films are important sources of organophosphate pollutants in farmlands[J]. Environmental Science & Technology, 2021, 55(11): 7398-7406.
|
[26] |
ZHAO F, PING H, LIU J, et al. Occurrence, potential sources, and ecological risks of traditional and novel organophosphate esters in facility agriculture soils: A case study in Beijing, China[J]. Science of the Total Environment, 2024, 923: 171456. doi: 10.1016/j.scitotenv.2024.171456
|
[27] |
ZHANG Q, WANG Y X, JIANG X X, et al. Spatial occurrence and composition profile of organophosphate esters (OPEs) in farmland soils from different regions of China: Implications for human exposure[J]. Environmental Pollution, 2021, 276: 116729. doi: 10.1016/j.envpol.2021.116729
|
[28] |
张明, 唐访良, 吴志旭, 等. 千岛湖表层沉积物中多环芳烃污染特征及生态风险评价[J]. 中国环境科学, 2014, 34(1): 253-258.
ZHANG M, TANG F L, WU Z X, et al. Pollution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons(PAHs) in surface sediments from Xin’anjiang Reservoir[J]. China Environmental Science, 2014, 34(1): 253-258 (in Chinese).
|
[29] |
弥启欣, 国晓春, 卢少勇, 等. 千岛湖水体中邻苯二甲酸酯(PAEs)的分布特征及健康风险评价[J]. 环境科学, 2022, 43(4): 1966-1975.
MI Q X, GUO X C, LU S Y, et al. Distribution characteristics and ecological and health risk assessment of phthalic acid esters in surface water of Qiandao Lake, China[J]. Environmental Science, 2022, 43(4): 1966-1975 (in Chinese).
|
[30] |
CHOI W, LEE S, LEE H K, et al. Organophosphate flame retardants and plasticizers in sediment and bivalves along the Korean coast: Occurrence, geographical distribution, and a potential for bioaccumulation[J]. Marine Pollution Bulletin, 2020, 156: 111275. doi: 10.1016/j.marpolbul.2020.111275
|
[31] |
WANG X, ZHU Q Q, YAN X T, et al. A review of organophosphate flame retardants and plasticizers in the environment: Analysis, occurrence and risk assessment[J]. Science of the Total Environment, 2020, 731: 139071. doi: 10.1016/j.scitotenv.2020.139071
|
[32] |
VERBRUGGEN E M J, RILA J P, TRAAS T P, et al. Environmental risk limits for several phosphate esters, with possible application as flame retardant[R]. [2020-12-23]. 2005.
|
[33] |
European Commission. European Union risk assessment report: tris(2-chloroethyl)phosphate, TCEP[R]. [2020-12-23]. 2009.
|
[34] |
LIU Q, TANG X X, WANG Y, et al. ROS changes are responsible for tributyl phosphate (TBP)-induced toxicity in the alga Phaeodactylum tricornutum[J]. Aquatic Toxicology, 2019, 208: 168-178. doi: 10.1016/j.aquatox.2019.01.012
|
[35] |
CRISTALE J, GARCÍA VÁZQUEZ A, BARATA C, et al. Priority and emerging flame retardants in rivers: Occurrence in water and sediment, Daphnia magna toxicity and risk assessment[J]. Environment International, 2013, 59: 232-243. doi: 10.1016/j.envint.2013.06.011
|
[36] |
DU Z K, WANG G W, GAO S X, et al. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: By disturbing expression of the transcriptional regulators[J]. Aquatic Toxicology, 2015, 161: 25-32. doi: 10.1016/j.aquatox.2015.01.027
|
[37] |
DU Z K, ZHANG Y, WANG G W, et al. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver[J]. Scientific Reports, 2016, 6: 21827. doi: 10.1038/srep21827
|
[38] |
HAN Z H, WANG Q W, FU J, et al. Multiple bio-analytical methods to reveal possible molecular mechanisms of developmental toxicity in zebrafish embryos/larvae exposed to tris(2-butoxyethyl) phosphate[J]. Aquatic Toxicology, 2014, 150: 175-181. doi: 10.1016/j.aquatox.2014.03.013
|
[39] |
LIU C S, WANG Q W, LIANG K, et al. Effects of tris(1, 3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae[J]. Aquatic Toxicology, 2013, 128: 147-157.
|
[40] |
McGEE S P, COOPER E M, STAPLETON H M, et al. Early zebrafish embryogenesis is susceptible to developmental TDCPP exposure[J]. Environmental Health Perspectives, 2012, 120(11): 1585-1591. doi: 10.1289/ehp.1205316
|
[41] |
WANG C, WANG P, ZHAO J P, et al. Atmospheric organophosphate esters in the Western Antarctic Peninsula over 2014–2018: Occurrence, temporal trend and source implication[J]. Environmental Pollution, 2020, 267: 115428. doi: 10.1016/j.envpol.2020.115428
|
[42] |
LIU Q F, LI L, ZHANG X M, et al. Uncovering global-scale risks from commercial chemicals in air[J]. Nature, 2021, 600(7889): 456-461. doi: 10.1038/s41586-021-04134-6
|
[43] |
KORTENKAMP A, FAUST M. Regulate to reduce chemical mixture risk[J]. Science, 2018, 361(6399): 224-226. doi: 10.1126/science.aat9219
|
[44] |
LI X M, ZHAO N N, FU J, et al. Organophosphate diesters (di-OPEs) play a critical role in understanding global organophosphate esters (OPEs) in fishmeal[J]. Environmental Science & Technology, 2020, 54(19): 12130-12141.
|
[45] |
DENG Y F, ZHANG Y, QIAO R X, et al. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus)[J]. Journal of Hazardous Materials, 2018, 357: 348-354. doi: 10.1016/j.jhazmat.2018.06.017
|