[1] BALMER J E, HUNG H, VORKAMP K, et al. Hexachlorobutadiene (HCBD) contamination in the Arctic environment: A review[J]. Emerging Contaminants, 2019, 5: 116-122. doi: 10.1016/j.emcon.2019.03.002
[2] 金慧娟, 杨毅, 李秀颖, 等. 六氯-1, 3-丁二烯的微生物降解研究进展[J]. 微生物学通报, 2020, 47(10): 3407-3418. JIN H J, YANG Y, LI X Y, et al. Progress in microbial degradation of hexachlorobutadiene[J]. Microbiology China, 2020, 47(10): 3407-3418 (in Chinese).
[3] WANG M X, YANG L L, LIU X Y, et al. Hexachlorobutadiene emissions from typical chemical plants[J]. Frontiers of Environmental Science & Engineering, 2020, 15(4): 60.
[4] WANG L, BIE P J, ZHANG J B. Estimates of unintentional production and emission of hexachlorobutadiene from 1992 to 2016 in China[J]. Environmental Pollution, 2018, 238: 204-212. doi: 10.1016/j.envpol.2018.03.028
[5] BOOKER R. Microbial reductive dechlorination of hexachloro-1, 3-butadiene in a methanogenic enrichment culture[J]. Water Research, 2000, 34(18): 4437-4445. doi: 10.1016/S0043-1354(00)00214-1
[6] LI M T, HAO L L, SHENG L X, et al. Identification and degradation characterization of hexachlorobutadiene degrading strain Serratia marcescens HL1[J]. Bioresource Technology, 2008, 99(15): 6878-6884. doi: 10.1016/j.biortech.2008.01.048
[7] BOSMA T N, COTTAAR F H, POSTHUMUS M A, et al. Comparison of reductive dechlorination of hexachloro-1, 3-butadiene in Rhine sediment and model systems with hydroxocobalamin[J]. Environmental Science & Technology, 1994, 28(6): 1124-1128.
[8] 王庆良. 1, 3-丁二烯及六氯丁二烯的光化学反应研究[D]. 成都: 成都理工大学, 2020. WANG Q L. Photochemical reactions of 1, 3-butadiene and hexachlorobutadiene[D]. Chengdu: Chengdu University of Technology, 2020 (in Chinese).
[9] 赵晨妍, 孙宇翔, 杨莉莉, 等. 六氯丁二烯的排放源及环境污染特征[J]. 化学进展, 2023, 35(7): 1040-1052. doi: 10.7536/PC221126 ZHAO C Y, SUN Y X, YANG L L, et al. Source and environmental characteristics of hexachlorobutadiene[J]. Progress in Chemistry, 2023, 35(7): 1040-1052 (in Chinese). doi: 10.7536/PC221126
[10] 生态环境部, 中国政府网, 重点管控新污染物清单(2023年版)[EB] 2024-02-19]. Ministry of Ecology and Environment, List of New Pollutants under Key Control of the Chinese Government Network (2023 version). [EB][2024-02-19].
[11] 陶誉铭. 改性莫来石型催化剂制备及对六氯丁二烯降解性能研究[D]. 长春: 长春理工大学, 2021. TAO Y M. Preparation of modified mullite catalyst and degradation of hexachlorobutadiene[D]. Changchun: Changchun University of Science and Technology, 2021 (in Chinese).
[12] YEE L H, AAGAARD V, JOHNSTONE A, et al. Development of a treatment solution for reductive dechlorination of hexachloro-1, 3-butadiene in vadose zone soil[J]. Biodegradation, 2010, 21(6): 947-956. doi: 10.1007/s10532-010-9354-z
[13] KONG Q Q, WANG Y, YANG X. A review on hexachloro-1, 3-butadiene (HCBD): Sources, occurrence, toxicity and transformation[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(1): 1-7. doi: 10.1007/s00128-019-02744-5
[14] LIU Y, HU H L, ZHENG J M, et al. Interfacial engineering enables surface lattice oxygen activation of SmMn2O5 for catalytic propane combustion[J]. Applied Catalysis B: Environmental, 2023, 330: 122649. doi: 10.1016/j.apcatb.2023.122649
[15] WANG W C, McCOOL G, KAPUR N, et al. Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd)Mn2O5 for NO oxidation in diesel exhaust[J]. Science, 2012, 337(6096): 832-835. doi: 10.1126/science.1225091
[16] WANG F L, WANG P L, LAN T W, et al. Ultralow-temperature NOx reduction over SmMn2O5 mullite catalysts via modulating the superficial dual-functional active sites[J]. ACS Catalysis, 2022, 12(13): 7622-7632. doi: 10.1021/acscatal.2c01897
[17] SHEN Y J, DENG J, HAN L P, et al. Low-temperature combustion of toluene over Cu-doped SmMn2O5 mullite catalysts via creating highly active Cu2+-O-Mn4+ sites[J]. Environmental Science & Technology, 2022, 56(14): 10433-10441.
[18] GOLOVENCHITS E, SANINA V. Magnetic and magnetoelectric dynamics in RMn2O5 (R = Gd and Eu)[M]. Magnetoelectric Interaction Phenomena in Crystals. Dordrecht: Springer Netherlands, 2004: 139-150.
[19] GARCÍA-FLORES A F, GRANADO E, MARTINHO H, et al. Anomalous phonon shifts in the paramagnetic phase of multiferroic RMn2O5(R=Bi, Eu, Dy): Possible manifestations of unconventional magnetic correlations[J]. Physical Review B, 2006, 73(10): 104411. doi: 10.1103/PhysRevB.73.104411
[20] LI W L, MAO H, JIN B F, et al. High-surface-area SmMn2O5 nanosheets with crystal orientation for propane combustion: A facile microwave-assisted hydrothermal method[J]. Fuel, 2021, 306: 121685. doi: 10.1016/j.fuel.2021.121685
[21] THAMPY S, ASHBURN N, DILLON S, et al. Critical role of mullite-type oxides surface chemistry on catalytic NO oxidation performance[J]. The Journal of Physical Chemistry C, 2019, 123(9): 5385-5393. doi: 10.1021/acs.jpcc.8b10670
[22] CHEN X, YANG J Q, LIU Z, et al. Origin of ammonia selective oxidation activity of SmMn2O5 mullite: A first-principles-based microkinetic study[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 736-750.
[23] FENG Z J, WANG J Q, LIU X, et al. Promotional role of La addition in the NO oxidation performance of a SmMn2O5 mullite catalyst[J]. Catalysis Science & Technology, 2016, 6(14): 5580-5589.
[24] YANG J Q, ZHANG J, LIU X, et al. Origin of the superior activity of surface doped SmMn2O5 mullites for NO oxidation: A first-principles based microkinetic study[J]. Journal of Catalysis, 2018, 359: 122-129. doi: 10.1016/j.jcat.2018.01.002
[25] YANG Q L, LI Q, WANG X Y, et al. Synergistic effects of a CeO2/SmMn2O5-H diesel oxidation catalyst induced by acid-selective dissolution drive the catalytic oxidation reaction[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 2860-2870.
[26] MANTILLA J, MORALES M, VENCESLAU W, et al. Field-driven spin reorientation in SmMnO3 polycrystalline powders[J]. Journal of Alloys and Compounds, 2020, 845: 156327. doi: 10.1016/j.jallcom.2020.156327
[27] ZHU G Q, LIU P, HOJAMBERDIEV M, et al. Synthesis RMn2O5 (R = Gd and Sm) nano- and microstructures by a simple hydrothermal method[J]. Materials Chemistry and Physics, 2009, 118(2-3): 467-472. doi: 10.1016/j.matchemphys.2009.08.019
[28] YANG Q L, WANG X Y, LI X B, et al. Surface tailoring on SrMnO3@SmMn2O5 for boosting the performance in diesel oxidation catalyst[J]. Materials Chemistry and Physics, 2009, 118(2-3): 467-472. doi: 10.1016/j.matchemphys.2009.08.019
[29] MORALES M R, BARBERO B P, CADÚS L E. Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts[J]. Applied Catalysis B, Environmental, 2006, 67(3): 229-236.
[30] MACHOCKI A, IOANNIDES T, STASINSKA B, et al. Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane[J]. Journal of Catalysis, 2004, 227(2): 282-296. doi: 10.1016/j.jcat.2004.07.022
[31] WU H, PANTALEO G, Di CARLO G, et al. Co3O4 particles grown over nanocrystalline CeO2: Influence of precipitation agents and calcination temperature on the catalytic activity for methane oxidation[J]. Catalysis Science & Technology, 2015, 5(3): 1888-1901.
[32] PU Z Y, LIU Y, ZHOU H, et al. Catalytic combustion of lean methane at low temperature over ZrO2-modified Co3O4 catalysts[J]. Applied Surface Science, 2017, 422: 85-93. doi: 10.1016/j.apsusc.2017.05.231
[33] 冯子健. 莫来石型氧化物SmMn2O5在柴油车尾气处理和甲烷燃烧中的催化性能研究[D]. 武汉: 华中科技大学, 2018. FENG Z J. Catalytic performance of SmMn2O5 mullite for diesel exhaust purification and methane combustion[D]. Wuhan: Huazhong University of Science and Technology, 2018 (in Chinese).
[34] WU H F, ZHANG W J, LIU Y W, et al. One-step control of Brønsted acid sites and oxygen vacancies in Mn-based perovskite for boosting catalytic oxidation of chlorobenzene[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110210. doi: 10.1016/j.jece.2023.110210
[35] LIU L Z, ZHOU B, LIU Y W, et al. In-situ regulation of acid sites on Mn-based perovskite@mullite composite for promoting catalytic oxidation of chlorobenzene[J]. Journal of Colloid and Interface Science, 2022, 606: 1866-187. doi: 10.1016/j.jcis.2021.08.145
[36] GHIASSEE M, REZAEI M, MESHKANI F, et al. Preparation and optimization of the MnCo2O4 powders for low temperature CO oxidation using the Taguchi method of experimental design[J]. Research on Chemical Intermediates, 2019, 45(9): 4501-4515. doi: 10.1007/s11164-019-03845-w
[37] SI W Z, WANG Y, ZHAO S, et al. A facile method for in situ preparation of the MnO2/LaMnO3 catalyst for the removal of toluene[J]. Environmental Science & Technology, 2016, 50(8): 4572-4578.
[38] LIU R Y, ZHOU B, LIU L Z, et al. Enhanced catalytic oxidation of VOCs over porous Mn-based mullite synthesized by in situ dismutation[J]. Journal of Colloid and Interface Science, 2021, 585: 302-311. doi: 10.1016/j.jcis.2020.11.096
[39] YAFAROVA LILIYA V, MAMONTOV GRIGORY V, CHISLOVA IRINA V, et al. The effect of transition metal substitution in the perovskite-type oxides on the physicochemical properties and the catalytic performance in diesel soot oxidation[J]. Catalysts, 2021, 11(10): 1256. doi: 10.3390/catal11101256
[40] PANCHENKO Y N, GREKINA O E, MOCHALOV V I, et al. Vibrational spectra and conformational analysis of five chlorosubstituted buta-1, 3-dienes[J]. Journal of Molecular Structure, 1978, 49(1): 17-27. doi: 10.1016/0022-2860(78)87003-3
[41] YANG P, ZUO S F, ZHOU R X. Synergistic catalytic effect of (Ce, Cr)xO2 and HZSM-5 for elimination of chlorinated organic pollutants[J]. Chemical Engineering Journal, 2017, 323: 160-170. doi: 10.1016/j.cej.2017.04.002
[42] WAN X, WANG L, GAO S, et al. Low-temperature removal of aromatics pollutants via surface labile oxygen over Mn-based mullite catalyst SmMn2O5[J]. Chemical Engineering Journal, 2021, 410: 128305. doi: 10.1016/j.cej.2020.128305
[43] WANG J, WANG X, LIU X L, et al. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: The effects of chlorine substituents[J]. Catalysis Today, 2015, 241: 92-99. doi: 10.1016/j.cattod.2014.04.002
[44] GUNDERSEN G. Molecular structure of gaseous hexachlorobutadiene[J]. Journal of the American Chemical Society, 1975, 97(22): 6342-6346. doi: 10.1021/ja00855a009