POTTER M C. Electrical effects accompanying the decomposition of organic compounds[J]. Proceedings of the Royal Society of London, 1911, 84(571):260-276.
LOGAN B E, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.[J]. Science, 2012, 337(6095):686-690.
YANG Y G, SUN G P, XU M Y. Microbial fuel cells come of age[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(5):625-632.
SANTORO C, ARBIZZANI C, ERABLE B, et al. Microbial fuel cells:From fundamentals to applications. A review[J]. Journal of Power Sources, 2017, 356:225-244.
LOGAN B E. Scaling up microbial fuel cells and other bioelectrochemical systems[J]. Applied Microbiology and Biotechnology, 2010, 85(6):1665-1671.
LOGAN B E, WALLACK M J, KIM K Y, et al. Assessment of microbial fuel cell configurations and power densities[J]. Environmental Science & Technology Letters, 2015, 2(8):206-214.
EWING T, HA P T, BABAUTA J T, et al. Scale-up of sediment microbial fuel cells[J]. Journal of Power Sources, 2014, 272:311-319.
高利敏,张海东,申渝. 微生物燃料电池堆栈技术研究[J]. 山东化工,2015,44(23):135-138. GAO L M, ZHANG H D, SHEN Y. The research of stacking microbial fuel cell[J]. Shan Dong Chemical Industry, 2015,44(23):135-138(in Chinese).
孔令才,周顺桂,赵华章,等. 厌氧折流板式微生物燃料电池堆影响因素研究[J]. 环境工程学报,2010,4(1):21-26. KONG L C, ZHOU S G, ZHAO H Z, et al. Parameters affecting the performance of anaerobic baffled stacking microbial fuel cell[J]. Chinese Journal of Environmental Engineering, 2010,4(1):21-26(in Chinese).
ZHOU C Y, FU Y B, ZHANG H S, et al. Structure design and performance comparison of large-scale marine sediment microbial fuel cells in lab and real sea as power source to drive monitoring instruments for long-term work[J]. Ionics, 2018, 24(3):797-805.
TENDER L M, GRAY S A, GROVEMAN E, et al. The first demonstration of a microbial fuel cell as a viable power supply:Powering a meteorological buoy[J]. Journal of Power Sources, 2008, 179(2):571-575.
IEROPOULOS I A, LEDEZMA P, STINCHCOMBE A, et al. Waste to real energy:The first mfc powered mobile phone[J]. Physical Chemistry Chemical Physics, 2013, 15(37):15312-15316.
COHEN B. The bacterial culture as an electrical half-cell[J]. Journal of Bacteriology, 1931, 21(1):18-19.
AELTERMAN P, RABAEY K, PHAM H T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(10):3388-3394.
DEKKER A, HEIJNE A T, SAAKES M, et al. Analysis and improvement of a scaled-up and stacked microbial fuel cell[J]. Environmental Science & Technology, 2009, 43(23):9038-9042.
ZHUANG L, YUAN Y, WANG Y, et al. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater[J]. Bioresource Technology, 2012, 123:406-412.
WINFIELD J, IEROPOULOS I, GREENMAN J, et al. Investigating the effects of fluidic connection between microbial fuel cells[J]. Bioprocess & Biosystems Engineering, 2011, 34(4):477-484.
WALTER X A, STINCHCOMBE A, GREENMAN J, et al. Urine transduction to usable energy:A modular mfc approach for smartphone and remote system charging[J]. Applied Energy, 2017, 192:575-581.
IEROPOULOS I A, STINCHCOMBE A, GAJDA I, et al. Pee power urinal -microbial fuel cell technology field trials in the context of sanitation[J]. Environmental Science Water Research & Technology, 2016, 2(2):336-343.
ESTRADA-ARRIAGA E B, HERNANDEZ-ROMANO J, GARCIA-SANCHEZ L, et al. Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell:Effect of series and parallel configuration[J]. Journal of Environmental Management, 2018, 214:232-241.
宫本月,刘新民,郭庆杰. 厌氧流化床微生物燃料电池及其串并联性能[J]. 环境工程学报,2014,8(10):4527-4532. GONG B Y, LIU X M, GUO Q J. Performances of anaerobic fluidized bed microbial fuel cells and series-parallel connection[J]. Chinese Journal of Environmental Engineering, 2014,8(10):4527-4532(in Chinese).
徐娜,刘新民. 厌氧流化床微生物燃料电池串联处理啤酒废水[J]. 山东化工,2015,44(9):181-185. XU N, LIU X M. Treatment of the beer wastewater in series of anaerobic fluidized bed microbial fuel cells[J]. Shan Dong Chemical Industry, 2015,44(9):181-185(in Chinese).
TENDER L M, REIMERS C E., STECHER H A, et al. Harnessing microbially generated power on the seafloor[J]. Nature Biotechnology, 2002, 20(8):821-825.
ZHANG Y F, ANGELIDAKI I. Microbial electrochemical systems and technologies:It is time to report the capital costs[J]. Environmental Science & Technology, 2016, 50(11):5432-5433.
YANG Y G, LU Z J, LIN X K, et al. Enhancing the bioremediation by harvesting electricity from the heavily contaminated sediments[J]. Bioresource Technology, 2015, 179:615-618.
KARRA U, HUANG G X, UMAZ R, et al. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system[J]. Bioresource Technology, 2013, 144:477-484.
ABAZARIAN E, GHESHLAGHI R, MAHDAVI M A. The effect of number and configuration of sediment microbial fuel cells on their performance in an open channel architecture[J]. Journal of Power Sources, 2016, 325:739-744.
AZARI M A G, GHESHLAGHI R, MAHDAVI M A, et al. Electricity generation from river sediments using a partitioned open channel sediment microbial fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(8):5252-5260.
SUGNAUX M, SAVY C, CACHELIN C P, et al. Simulation and resolution of voltage reversal in microbial fuel cell stack.[J]. Bioresource Technology, 2017, 238:519-527.
YANG Y G, YAN L, SONG J H, et al. Optimizing the electrode surface area of sediment microbial fuel cells[J]. RSC Advances, 2018, 8(45):25319-25324.
ZHANG L, LI J, ZHU X, et al. Response of stacked microbial fuel cells with serpentine flow fields to variable operating conditions[J]. International Journal of Hydrogen Energy, 2017, 42(45):27641-27648.
GURUNG A, OH S E. The performance of serially and parallelly connected microbial fuel cells.[J]. Energy Sources, 2012, 34(17):1591-1598.
LI J, LI H J, FU Q, et al. Voltage reversal causes bioanode corrosion in microbial fuel cell stacks[J]. International Journal of Hydrogen Energy, 2017, 42(45):27649-27656.
KIM D, AN J, KIM B, et al. Scaling-up microbial fuel cells:configuration and potential drop phenomenon at series connection of unit cells in shared anolyte[J]. Chemsuschem, 2012, 5(6):1086-1091.
ZHUANG L, ZHOU S G. Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack[J]. Electrochemistry Communications, 2009, 11(5):937-940.
YAZDI H, ALZATE-GAVIRIA L, REN Z J. Pluggable microbial fuel cell stacks for septic wastewater treatment and electricity production[J]. Bioresource Technology, 2015, 180:258-263.
IEROPOULOS I, GREENMAN J, MELHUISH C. Microbial fuel cells based on carbon veil electrodes:Stack configuration and scalability[J]. International Journal of Energy Research, 2010, 32(13):1228-1240.
WANG Z J, WU Y C, WANG L, et al. Polarization behavior of microbial fuel cells under stack operation[J]. Chinese Science Bulletin, 2014, 59(18):2214-2220.
YANG Y G,YAN L,LIN X K,et al. Effects of unit distance and number on sediment microbial fuel cell stacks for practical power supply[J]. International Journal of Energy Research, 2019,43:7287-7295.
WANG B, HAN J I. A single chamber stackable microbial fuel cell with air cathode[J]. Biotechnology Letters, 2009, 31(3):387-393.
ZHAO N N, ANGELIDAKI I, ZHANG Y F. Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol[J]. Water Research, 2017, 109:367-374.
WANG H, PARK J D, REN Z J. Practical energy harvesting for microbial fuel cells:A review[J]. Environmental Science & Technology, 2015, 49(6):3267-3277.
LOBO F L, WANG H M, FORRESTAL C, et al. AC power generation from microbial fuel cells[J]. Journal of Power Sources, 2015, 297:252-259.
YAMASHITA T, HAYASHI T, IWASAKI H, et al. Ultra-low-power energy harvester for microbial fuel cells and its application to environmental sensing and long-range wireless data transmission[J]. Journal of Power Sources, 2019,430:1-11.
ALARAJ M, RADENKOVIC M, PARK J D. Intelligent energy harvesting scheme for microbial fuel cells:Maximum power point tracking and voltage overshoot avoidance[J]. Journal of Power Sources, 2017, 342:726-732.
DEWAN A, BEYENAL H, LEWANDOWSKI Z. Intermittent energy harvesting improves the performance of microbial fuel cells[J]. Environmental Science & Technology, 2009, 43(12):4600-4605.
LIANG P, WU W L, WEI J C, et al. Alternate charging and discharging of capacitor to enhance the electron production of bioelectrochemical Systems[J]. Environmental Science & Technology, 2011, 45(15):6647-6653.
LIU J, FENG Y J, HE W H, et al. A novel boost circuit design and in situ electricity application for elemental sulfur recovery[J]. Journal of Power Sources, 2014, 248:317-322.
WILKINSON S. "Gastrobots"-Benefits and challenges of microbial fuel cells in foodpowered robot applications[J]. Autonomous Robots, 2000, 9(2):99-111.
IEROPOULOS I A, GREENMAN J, MELHUISH C, et al. Microbial fuel cells for robotics:energy autonomy through artificial symbiosis[J]. Chemsuschem, 2012, 5(6):1020-1026.
WALTER X A, MERINO-JIMENEZ I, GREENMAN J, et al. Pee power®, urinal II -urinal scale-up with microbial fuel cell scale-down for improved lighting[J]. Journal of Power Sources, 2018, 392:150-158.
DONOVAN C, DEWAN A, PENG H A, et al. Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell[J]. Journal of Power Sources, 2011, 196(3):1171-1177.
DEWAN A, DONOVAN C, HEO D, et al. Evaluating the performance of microbial fuel cells powering electronic devices[J]. Journal of Power Sources, 2010, 195(1):90-96.
ZAI J Z, FU Y B, ZAI X R, et al. Fabrication of novel Ag/AgCl electrode pair on the template of carbon foam as marine electric field sensor and its electrochemical performances[J]. Ionics, 2017, 23(8):2213-2219.