[1] |
Climate Action Tracker. CAT net zero target evaluations [EB/OL]. [2024-03-12]. https://climate action tracker.org/global/cat-net-zero-target-evaluations/.
|
[2] |
FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W, et al. Global carbon budget 2022[J]. Earth System Science Data, 2022, 14(11): 4811-4900. doi: 10.5194/essd-14-4811-2022
|
[3] |
Because the Ocean. First because the ocean declaration [EB/OL]. [2024-03-12]. https://www.becausetheocean.org/first-because-the-ocean-declaration/.
|
[4] |
GALLO N D, VICTOR D G, LEVIN L A. Ocean commitments under the Paris Agreement[J]. Nature Climate Change, 2017, 7(11): 833-838. doi: 10.1038/nclimate3422
|
[5] |
GATTUSO J P, WILLIAMSON P, DUARTE C M, et al. The potential for ocean-based climate action: negative emissions technologies and beyond[J]. Frontiers in Climate, 2021, 2: 575716. doi: 10.3389/fclim.2020.575716
|
[6] |
李三忠, 刘丽军, 索艳慧, 等. 碳构造: 一个地球系统科学新范式[J]. 科学通报, 2023, 68(4): 309-338.
|
[7] |
JIAO N, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593-599. doi: 10.1038/nrmicro2386
|
[8] |
ZHANG H, WANG K, FAN G, et al. Feedbacks of CaCO3 dissolution effect on ocean carbon sink and seawater acidification: a model study[J]. Environmental Research Communications, 2023, 5(2): 021004. doi: 10.1088/2515-7620/aca9ac
|
[9] |
焦念志, 梁彦韬, 张永雨, 等. 中国海及邻近区域碳库与通量综合分析[J]. 中国科学: 地球科学, 2018, 48(11): 1393-1421.
|
[10] |
VOLK T, HOFFERT M I. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[J]. The carbon cycle and atmospheric CO2: Natural variations Archean to present, 1985, 32: 99-110.
|
[11] |
ROST B, RIEBESELL U. Coccolithophores and the biological pump: responses to environmental changes[M]//Coccolithophores: from molecular processes to global impact. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 99-125.
|
[12] |
LONGHURST A R, HARRISON W G. The biological pump: profiles of plankton production and consumption in the upper ocean[J]. Progress in Oceanography, 1989, 22(1): 47-123. doi: 10.1016/0079-6611(89)90010-4
|
[13] |
JIAO N, TANG K, CAI H, et al. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land[J]. Nature Reviews Microbiology, 2011, 9(1): 75-75.
|
[14] |
GRUBER N, BAKKER D C E, DEVRIES T, et al. Trends and variability in the ocean carbon sink[J]. Nature Reviews Earth & Environment, 2023, 4(2): 119-134.
|
[15] |
FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W, et al. Global carbon budget[J]. Earth System Science Data, 2023, 15: 5301-5369. doi: 10.5194/essd-15-5301-2023
|
[16] |
LIU C, LIU G, CASAZZA M, et al. Current status and potential assessment of China’s ocean carbon sinks[J]. Environmental Science & Technology, 2022, 56(10): 6584-6595.
|
[17] |
COALE K H, JOHNSON K S, FITZWATER S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean[J]. Nature, 1996, 383: 495-501. doi: 10.1038/383495a0
|
[18] |
Committee on Geoengineering Climate: Technical Evaluation and Discussion of Impacts, Board on Atmospheric Science and Climate, Ocean Studies Board, Division on Earth and Life Studies, et al. Climate Intervention: Carbon dioxide removal and reliable sequestration. Washington DC: The National Academies Press, 2015.
|
[19] |
Committee on a Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration, Ocean Studies Board, Division on Earth and Life Studies, et al. A research strategy for ocean-based carbon dioxide removal and sequestration. Washington DC: The National Academies Press, 2022.
|
[20] |
National Centers for Environmental Information. Monthly global climate report for January 2023. Bouder: NOAA, 2023.
|
[21] |
Sensing Exports of Anthropogenic Carbon through Ocean Observation [EB/OL]. [2023-02-16]. https://arpa-e.energy.gov/technologies/programs/sea-co2.
|
[22] |
Ocean-based Negative Emission Technologies[EB/OL]. https://www.oceannets.eu.
|
[23] |
Carbon Dioxide Removal mare[EB/OL]. https://cdrmare.de/en/die-mission/cdrmare-struktur/.
|
[24] |
Assessing marine biogenic matter Production, Export and Remineralization: From the surface to the dark ocean[EB/OL]. https://www-iuem.univ-brest.fr/lemar/projets-scientifiques/apero/\.
|
[25] |
OceanICU[EB/OL]. https://ocean-icu.eu/.
|
[26] |
Strategies for the Evaluation and Assessment of Ocean based Carbon Dioxide Removal[EB/OL]. https://seao2-cdr.eu/.
|
[27] |
焦念志, 骆庭伟, 刘纪化, 等. 海洋负排放——基于地球系统科学思维的海洋科技变革[J]. 中国科学院院刊, 2023, 38(9): 1294-1305.
|
[28] |
中华人民共和国自然资源部, 中国国家标准化管理委员会. 海洋碳汇核算方法: HY/T 0349-2022[S]. 北京: 中国标准出版社, 2022.
|
[29] |
Biological Influence on Future Ocean Storage of Carbon[EB/OL]. https://bio-carbon.ac.uk/.
|
[30] |
IPCC. Global warming of 1.5 °C[EB/OL]. (2020-03-12). [2024-03-12]. https://www.ipcc.ch/sr15/download/#full.
|
[31] |
LENTON T M. The global potential for carbon dioxide removal[J]. Environmental Science and Technology, 2014, 38: 52-79.
|
[32] |
CAPRON M E, STEWART J R, DE RAMON N A, et al. Restoring pre-industrial CO2 levels while achieving sustainable development goals[J]. Energies, 2020, 13(18): 4972. doi: 10.3390/en13184972
|
[33] |
DUARTE C M, SINTES T, MARBÀ N. Assessing the CO2 capture potential of seagrass restoration projects[J]. Journal of Applied Ecology, 2013, 50(6): 1341-1349. doi: 10.1111/1365-2664.12155
|
[34] |
MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552-560. doi: 10.1890/110004
|
[35] |
REYNOLDS L K, WAYCOTT M, MCGLATHERY K J, et al. Ecosystem services returned through seagrass restoration[J]. Restoration Ecology, 2016, 24(5): 583-588. doi: 10.1111/rec.12360
|
[36] |
KRAUSE-JENSEN D, DUARTE C M. Substantial role of macroalgae in marine carbon sequestration[J]. Nature Geoscience, 2016, 9(10): 737-742. doi: 10.1038/ngeo2790
|
[37] |
PESSARRODONA A, FRANCO-SANTOS R M, WRIGHT L S, et al. Carbon sequestration and climate change mitigation using macroalgae: A state of knowledge review[J]. Biological Reviews, 2023, 98(6): 1945-1971. doi: 10.1111/brv.12990
|
[38] |
PAN Y W, FAN W, ZHANG D H, et al. Research progress in artificial upwelling and its potential environmental effects[J]. Science China Earth Sciences, 2016, 59: 236-248. doi: 10.1007/s11430-015-5195-2
|
[39] |
HARRISON D P. A method for estimating the cost to sequester carbon dioxide by delivering iron to the ocean[J]. International Journal of Global Warming, 2013, 5(3): 231-254. doi: 10.1504/IJGW.2013.055360
|
[40] |
JONES I S F. The cost of carbon management using ocean nourishment[J]. International Journal of Climate Change Strategies and Management, 2014, 6(4): 391-400. doi: 10.1108/IJCCSM-11-2012-0063
|
[41] |
National Academies of Sciences, Engineering, and Medicine. A research strategy for ocean-based carbon dioxide removal and sequestration[M]. 2021.
|
[42] |
CROSS J N, SWEENEY C, JEWETT E B, et al. Strategy for NOAA carbon dioxide removal (CDR) research: A white paper documenting a potential NOAA CDR science strategy as an element of NOAA’s climate interventions portfolio. NOAA Special Report. NOAA, Washington DC. 2023.
|
[43] |
KARUNARATHNE S, ANDRENACCI S, CARRANZA-ABAID A, et al. Review on CO2 removal from ocean with an emphasis on direct ocean capture (DOC) technologies[J]. Separation and Purification Technology, 2024: 128598.
|
[44] |
Board, Ocean Studies, and National Academies of Sciences, Engineering, and Medicine. A research strategy for ocean-based carbon dioxide removal and sequestration. 2021.
|
[45] |
EISAMAN M, GEILERT S, RENFORTH P, et al. Assessing technical aspects of ocean alkalinity enhancement approaches[J]. State of the Planet Discussions, 2023, 2023: 1-52.
|
[46] |
OSCHLIES A, PAHLOW M, YOOL A, et al. Climate engineering by artificial ocean upwelling: Channelling the sorcerer's apprentice[J]. Geophysical Research Letters, 2010, 37(4): L04701.
|
[47] |
LI C, JI X, LUO X. Phytoremediation of heavy metal pollution: A bibliometric and scientometric analysis from 1989 to 2018[J]. International Journal of Environmental Research and Public Health, 2019, 16(23): 4755. doi: 10.3390/ijerph16234755
|
[48] |
LOVELOCK C E, DUARTE C M. Dimensions of blue carbon and emerging perspectives[J]. Biology letters, 2019, 15(3): 20180781. doi: 10.1098/rsbl.2018.0781
|
[49] |
ZHANG Y Y, ZHANG J H, LIANG Y T, et al. Carbon sequestration processes and mechanisms in coastal mariculture environments in China[J]. Science China Earth Sciences, 2017, 60: 2097-2107. doi: 10.1007/s11430-017-9148-7
|
[50] |
杨宇峰, 罗洪添, 王庆等. 大型海藻规模栽培是增加海洋碳汇和解决近海环境问题的有效途径[J]. 中国科学院院刊, 2021, 36(03): 259-269.
|
[51] |
JIAO N, WANG H, XU G, et al. Blue carbon on the rise: challenges and opportunities[J]. National Science Review, 2018, 5(4): 464-468. doi: 10.1093/nsr/nwy030
|
[52] |
SEIFAN M, BERENJIAN A. Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world[J]. Applied Microbiology and Biotechnology, 2019, 103: 4693-4708. doi: 10.1007/s00253-019-09861-5
|
[53] |
ORSI, A H, THOMAS W. Hydrographic atlas of the world ocean circulation experiment (WOCE): Southern Ocean. 2005, 1: 223.
|