[1] |
张贤, 李凯, 马乔, 等. 碳中和目标下CCUS技术发展定位与展望[J]. 中国人口·资源与环境, 2021, 31(9): 29-33. doi: 10.12062/cpre.20210827
|
[2] |
周守为, 朱军龙. 助力“碳达峰、碳中和”战略的路径探索[J]. 天然气工业, 2021, 41(12): 1-8. doi: 10.3787/j.issn.1000-0976.2021.12.001
|
[3] |
邹才能, 薛华庆, 熊波, 等. “碳中和”的内涵、创新与愿景[J]. 天然气工业, 2021, 41(8): 46-57. doi: 10.3787/j.issn.1000-0976.2021.08.005
|
[4] |
李琦, 李彦尊, 许晓艺, 等. 海上CO2地质封存监测现状及建议[J]. 高校地质学报, 2023, 29(1): 1-12.
|
[5] |
许晓艺, 李琦, 刘桂臻, 等. 基于多准则决策的CO2地质封存场地适宜性评价方法[J]. 第四纪研究, 2023, 43(2): 551-559. doi: 10.11928/j.issn.1001-7410.2023.02.20
|
[6] |
张建勇, 崔振东, 周健, 等. 流体注入工程诱发断层活化的风险评估方法[J]. 天然气工业, 2018, 38(8): 33-40. doi: 10.3787/j.issn.1000-0976.2018.08.005
|
[7] |
刘桂臻, 李琦, 周囧, 等. 《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》在胜利油田驱油封存项目上的应用初探[J]. 环境工程, 2018, 36(3): 42-53.
|
[8] |
景萌, 刘桂臻, 李琦, 等. 基于社会网络分析方法的二氧化碳地质封存风险传染特征研究[J]. 高校地质学报, 2023, 29(1): 100-109.
|
[9] |
GCCSI. Global status of CCS 2022[R]. Melbourne, Australia: GCCSI, 2022.
|
[10] |
李琦, 刘桂臻, 蔡博峰, 等. 二氧化碳地质封存环境风险评估的空间范围确定方法研究[J]. 环境工程, 2018, 36(2): 27-32.
|
[11] |
LEWICKI J L, BIRKHOLZER J, TSANG C F. Natural and industrial analogues for leakage of CO2 from storage reservoirs: identification of features, events, and processes and lessons learned[J]. Environmental Geology, 2006, 52(3): 457-467.
|
[12] |
MOURA P, FAZENDEIRO P, INACIO P R M, et al. Assessing access control risk for mhealth: A delphi study to categorize security of health data and provide risk assessment for mobile Apps[J]. Journal of Healthcare Engineering, 2020, 5601068.
|
[13] |
WASSERMANN S, SCHULZ M, SCHEER D. Linking public acceptance with expert knowledge on CO2 storage: Outcomes of a delphi approach[J]. Energy Procedia, 2011, 4(3): 6353-6359.
|
[14] |
PATRICIA L, WILLIAM L, K D. Risk assessment and management frameworks for carbon capture and geological storage: a global perspective[J]. International Journal of Risk Assessment and Management, 2019, 22(3): 254-285.
|
[15] |
李琦, 赵楠, 刘兰翠, 等. 澳大利亚Gorgon二氧化碳咸水层封存项目环境风险评价方法[J]. 环境工程, 2019, 37(2): 22-34.
|
[16] |
CHEN Z A, LI Q, LIU L C, et al. A large national survey of public perceptions of CCS technology in China[J]. Applied Energy, 2015(158): 366-377.
|
[17] |
ZENG M, OUYANG S, ZHANG Y, et al. CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis[J]. Renewable and Sustainable Energy Reviews, 2014(39): 604-616.
|
[18] |
ARILD Ø, FORD E P, LOHNE H P, et al. A comparison of FEP-analysis and barrier analysis for CO2 leakage risk assessment on an abandoned czech oilfield[J]. Energy Procedia, 2017(114): 4237-4255.
|
[19] |
PAULLEY A, METCALFE R, LIMER L. Systematic FEP and scenario analysis to provide a framework for assessing long-term performance of the Krechba CO2 storage system at In Salah[J]. Energy Procedia, 2011(4): 4185-4192.
|
[20] |
PRESTON C, MONEA M, JAZRAWI W, et al. IEA GHG Weyburn CO2 monitoring and storage project[J]. Fuel Processing Technology, 2005, 86(14-15): 1547-1568. doi: 10.1016/j.fuproc.2005.01.019
|
[21] |
WALKE R, METCALFE R, LIMER L, et al. Experience of the application of a database of generic Features, Events and Processes (FEPs) targeted at geological storage of CO2[J]. Energy Procedia, 2011(4): 4059-4066.
|
[22] |
YAMAGUCHI K, TAKIZAWA K, SHIRAGAKI O, et al. Features events and processes (FEPs) and scenario analysis in the field of CO2 Storage[J]. Energy Procedia, 2013(37): 4833-4842.
|
[23] |
YAVUZ F, VAN TILBURG T, DAVID P, et al. Second generation CO2 FEP analysis: CASSIF-carbon storage scenario identification framework[J]. Energy Procedia, 2009, 1(1): 2479-2485. doi: 10.1016/j.egypro.2009.02.010
|
[24] |
DUGUID A, GLIER J, HEINRICHS M, et al. Practical leakage risk assessment for CO2 assisted enhanced oil recovery and geologic storage in Ohio's depleted oil fields[J]. International Journal of Greenhouse Gas Control, 2021(109): 103338.
|
[25] |
GUéNAN T L, MANCEAU J C, BOUC O, et al. GERICO: A database for CO2 geological storage risk management[J]. Energy Procedia, 2011(4): 4124-4131.
|
[26] |
PAWAR R J, BROMHAL G S, CAREY J W, et al. Recent advances in risk assessment and risk management of geologic CO2 storage[J]. International Journal of Greenhouse Gas Control, 2015(40): 292-311.
|
[27] |
TUCKER O, HOLLEY M, METCALFE R, et al. Containment risk management for CO2 storage in a depleted gas field, UK north sea[J]. Energy Procedia, 2013(37): 4804-4817.
|
[28] |
CARRO A, CHACARTEGUI R, TEJADA C, et al. FMEA and risks assessment for thermochemical energy storage systems based on carbonates[J]. Energies, 2021, 14(19): 6013. doi: 10.3390/en14196013
|
[29] |
DIAS S, GUEN Y L, POUPARD O, et al. Risk assessment of MUSTANG project experimental site–Methodological development[J]. Energy Procedia, 2011(4): 4109-4116.
|
[30] |
LI B, GUO B, LI H, et al. Leak risk assessment for plugged wells in carbon sequestration projects[J]. Journal of Sustainable Energy Engineering, 2015, 3(1): 44-65. doi: 10.7569/JSEE.2015.629505
|
[31] |
ORAEE-MIRZAMANI B, COCKERILL T, MAKUCH Z. Risk assessment and management associated with CCS[J]. Energy Procedia, 2013(37): 4757-4764.
|
[32] |
FARRET R, GOMBERT P, LAHAIE F, et al. Design of fault trees as a practical method for risk analysis of CCS: Application to the different life stages of deep aquifer storage, combining long-term and short-term issues[J]. Energy Procedia, 2011(4): 4193-4198.
|
[33] |
RAHMAN M J, CHOI J C, FAWAD M, et al. Probabilistic analysis of Vette fault stability in potential CO2 storage site Smeaheia, offshore Norway[J]. International Journal of Greenhouse Gas Control, 2021(108): 103315.
|
[34] |
WANG Y, ZHANG L, REN S, et al. Identification of potential CO2 leakage pathways and mechanisms in oil reservoirs using fault tree analysis[J]. Greenhouse Gases: Science and Technology, 2020, 10(2): 331-346. doi: 10.1002/ghg.1959
|
[35] |
任韶然, 韩波, 任建峰, 等. 油藏埋存CO2泄漏机制及故障树分析[J]. 中国石油大学学报(自然科学版), 2017, 41(1): 96-101.
|
[36] |
GERSTENBERGER M C, CHRISTOPHERSEN A. A Bayesian network and structured expert elicitation for Otway Stage 2C: Detection of injected CO2 in a saline aquifer[J]. International Journal of Greenhouse Gas Control, 2016(51): 317-329.
|