[1] |
汪集旸, 庞忠和, 程远志, 等. 全球地热能的开发利用现状与展望[J]. 科技导报, 2023, 41(12): 5-11.
|
[2] |
International Energy Agency. Technology roadmap: geothermal heat and power[EB/OL]. [2023-12-30]. https://iea.blob.core.windows.net/assets/f108d75f-302d-42ca-9542-458eea569f5d/Geothermal_Roadmap.pdf,2011.
|
[3] |
PAN S Y, GAO M Y, SHAH K J, et al. Establishment of enhanced geothermal energy utilization plans: barriers and strategies[J]. Renewable Energy, 2019, 132: 19-32. doi: 10.1016/j.renene.2018.07.126
|
[4] |
LUND J W, TOTH A N. Direct utilization of geothermal energy 2020 worldwide review[J]. Geothermics, 2021, 90: 101915. doi: 10.1016/j.geothermics.2020.101915
|
[5] |
International Renewable Energy Agency. Renewable energy statistics 2023[EB/OL]. [2023-12-30]. https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Jul/IRENA_Renewable_energy_statistics_2023.pdf?rev=7b2f44c294b84cad9a27fc24949d2134,2023.
|
[6] |
自然资源部中国地质调查局, 国家能源局新能源和可再生能源司, 中国科学院科技战略咨询研究院, 国务院发展研究中心资源与环境政策研究所. 中国地热能发展报告 [R]. 北京: 中国石化出版社, 2018.
|
[7] |
许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. doi: 10.3981/j.issn.1000-7857.2012.32.004
|
[8] |
李偲, 王亚军, 李子祥, 等. 干热岩发电发展现状与挑战[J]. 科技资讯, 2023, 21(13): 151-154.
|
[9] |
The U. S. Department of Energy. Geothermal technologies office multi-year program plan [EB/OL]. [2023-12-30]. https://www.energy.gov/eere/geothermal/geothermal-technologies-office-multi-year-program-plan,2022.
|
[10] |
RICTHER A. ETIP-DG: Implementation roadmap for deep geothermal in the European Union[EB/OL]. [2023-12-30]. https://www.thinkgeoenergy.com/etip-dg-implementation-roadmap-for-deep-geothermal-in-the-european-union/, 2019.
|
[11] |
CARIAGA C. Germany aims for 100 new geothermal projects by 2030[EB/OL]. [2023-12-20]. https://www.thinkgeoenergy.com/germany-aims-for-100-new-geothermal-projects-by-2030/, 2022.
|
[12] |
舟丹. 各国地热发展目标[J]. 中外能源, 2022, 27(2): 78.
|
[13] |
LANE A C. The geothermal gradient in Michigan[J]. American Journal of Science, 1900, 9(54): 434-438.
|
[14] |
JONNY R. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations[J]. Computers & Geosciences, 2011, 37(6): 739-750.
|
[15] |
SMITH C N, KESLER S E, BLUM J D, et al. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA[J]. Earth and Planetary Science Letters, 2008, 269(3): 399-407.
|
[16] |
AGUILAR-OJEDA J A, CAMPOS-GAYTAN J R, VILLELA A, et al. Understanding hydrothermal behavior of the Maneadero geothermal system, Ensenada, Baja California, Mexico[J]. Geothermics, 2021, 89: 101985. doi: 10.1016/j.geothermics.2020.101985
|
[17] |
FOWLER A P G, ZIERENBERG R A. Elemental changes and alteration recorded by basaltic drill core samples recovered from in situ temperatures up to 345°C in the active, seawater‐recharged Reykjanes geothermal system, Iceland[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(11): 4772-4801. doi: 10.1002/2016GC006595
|
[18] |
RENAUD T, VERDIN P, FALCONE G. Numerical simulation of a deep borehole heat exchanger in the Krafla geothermal system[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118496. doi: 10.1016/j.ijheatmasstransfer.2019.118496
|
[19] |
DUAN R, LI P, WANG L, et al. Hydrochemical characteristics, hydrochemical processes and recharge sources of the geothermal systems in Lanzhou City, northwestern China[J]. Urban Climate, 2022, 43: 101152. doi: 10.1016/j.uclim.2022.101152
|
[20] |
CAO R, DOR J, CAI Y Q, et al. Geochemical and H–O–Sr–B isotope signatures of Yangyi geothermal fields: implications for the evolution of thermal fluids in fracture-controlled type geothermal system, Tibet, China[J]. Geothermal Energy, 2023, 11: 23. doi: 10.1186/s40517-023-00263-5
|
[21] |
GUO Q H, MENG Y, Planer-Friedrich B. An approach combining chlorine isotopes and hydrochemistry for identification of magmatic fluid-affected hydrothermal systems[J]. Journal of Hydrology, 2023, 620: 129495. doi: 10.1016/j.jhydrol.2023.129495
|
[22] |
霍超, 林倚天, 李刚, 等. 碳中和背景下中国地热资源勘查技术研究进展[J]. 科学技术与工程, 2023, 23(12): 4917-4927. doi: 10.12404/j.issn.1671-1815.2023.23.12.04917
|
[23] |
KUMARI W G P, RANJITH P G, PERERA M S A, et al. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks[J]. Fuel, 2018, 230: 138-154. doi: 10.1016/j.fuel.2018.05.040
|
[24] |
CUI G D, NING F L, DOU B, et al. Particle migration and formation damage during geothermal exploitation from weakly consolidated sandstone reservoirs via water and CO2 recycling[J]. Energy, 2022, 240: 122507. doi: 10.1016/j.energy.2021.122507
|
[25] |
MAJER E L, BARIA R, STARK M, et al. Induced seismicity associated with Enhanced Geothermal Systems[J]. Geothermics, 2007, 36(3): 185-222. doi: 10.1016/j.geothermics.2007.03.003
|
[26] |
AHINOAM P, ROLAND H, TAPAN M, 等. 开发干热岩面临哪些挑战?来自64个干热岩项目的观测结果[J]. 地热能, 2022(5): 10.
|
[27] |
孙焕泉, 毛翔, 吴陈冰洁, 等. 地热资源勘探开发技术与发展方向[J]. 地学前缘, 2024, 31(1): 400-411.
|
[28] |
LU S M. A global review of enhanced geothermal system (EGS)[J]. Renewable & Sustainable Energy Reviews, 2018, 81: 2902-2921.
|
[29] |
SONG X, SHI Y, Li G, et al. Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells[J]. Applied Energy, 2018, 218: 325-337. doi: 10.1016/j.apenergy.2018.02.172
|
[30] |
SUN Z X, ZHANG X, XU Y, et al. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model[J]. Energy, 2017, 120: 20-33. doi: 10.1016/j.energy.2016.10.046
|
[31] |
GUGLIELMI Y, CAPPA F, AVOUAC J P, et al. Seismicity triggered by fluid injection-induced aseismic slip[J]. Science, 2015, 348(6240): 1224-1226. doi: 10.1126/science.aab0476
|
[32] |
GRIGOLI F, CESCA S, RINALDI A P, et al. The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea[J]. Science, 2018, 360(6392): 1003-1006. doi: 10.1126/science.aat2010
|
[33] |
王贵玲, 陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 2022, 31(3): 412-425.
|
[34] |
MINDEL J, DRIESNER T. Heatstore: Preliminary design of a high temperature aquifer thermal energy storage(HTATES)system in Geneva based on TH simulations[C]//World Geothermal Congress. Reykjavik, Iceland: WGC, 2020.
|
[35] |
GREEN S, MCLENNAN J, PANJA P, et al. Geothermal battery energy storage[J]. Renewable Energy, 2021, 164: 777-790. doi: 10.1016/j.renene.2020.09.083
|
[36] |
黄永辉, 庞忠和, 程远志, 等. 深层含水层地下储热技术的发展现状与展望[J]. 地学前缘, 2020, 27(1): 17-24.
|
[37] |
HUANG Y, PANG Z, KONG Y, et al. Assessment of the high-temperature aquifer thermal energy storage (HTATES) potential in naturally fractured geothermal reservoirs with a stochastic discrete fracture network model[J]. Journal of Hydrology, 2021, 603: 127188. doi: 10.1016/j.jhydrol.2021.127188
|
[38] |
肖立业, 张京业, 聂子攀, 等. 地下储能工程[J]. 电工电能新技术, 2022, 41(2): 1-9. doi: 10.12067/ATEEE2110025
|
[39] |
CHAGNON-LESSARD N, MATHIEU-POTVIN F, GOSSELIN L. Optimal design of geothermal power plants: A comparison of single-pressure and dual-pressure organic Rankine cycles[J]. Geothermics, 2020, 86: 101787. doi: 10.1016/j.geothermics.2019.101787
|
[40] |
谢和平, 昂然, 李碧雄, 等. 基于热伏材料中低温地热发电原理与技术构想[J]. 工程科学与技术, 2018, 50(2): 1-12.
|
[41] |
XIE H, GAO T, LONG X, et al. Design and performance of a modular 1 kilowatt-level thermoelectric generator for geothermal application at medium-low temperature[J]. Energy Conversion and Management, 2024, 298: 117782.
|
[42] |
MAHMOUDAN A, ESMAEILION F, HOSEINZADEH S, et al. A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization[J]. Applied Energy, 2022, 308: 118399. doi: 10.1016/j.apenergy.2021.118399
|
[43] |
ALIRAHMI M S, DABBAGH R S, AHMADI P, et al. Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy[J]. Energy Conversion and Management, 2020, 205: 112426. doi: 10.1016/j.enconman.2019.112426
|
[44] |
HEKMATSHOAR M, DEYMI-DASHTEBAYAZ M, GHOLIZADEH M, et al. Thermoeconomic analysis and optimization of a geothermal-driven multi-generation system producing power, freshwater, and hydrogen[J]. Energy, 2022, 247: 123434. doi: 10.1016/j.energy.2022.123434
|
[45] |
XING L N, LI J. Proposal of biomass/geothermal hybrid driven poly-generation plant centering cooling, heating, power, and hydrogen production with CO2 capturing: Design and 3E evaluation[J]. Fuel, 2022, 330: 125593. doi: 10.1016/j.fuel.2022.125593
|
[46] |
SONG J, WANG Y X, WANG K, et al. Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: Thermoeconomic assessment of various configurations[J]. Renewable Energy, 2021, 174: 1020-1035. doi: 10.1016/j.renene.2021.04.124
|
[47] |
EGEC Geothermal. Geothermal lithium for the EU critical raw materials act[EB/OL]. [2023-12-30]. https://www.egec.org/geothermal-lithium-for-the-eu-critical-raw-materials-act/, 2023.
|
[48] |
The U. S. Department of Energy. DOE invests millions in America’s massive lithium-production potential[EB/OL]. [2023-12-30]. https://www.energy.gov/articles/doe-invests-millions-americas-massive-lithium-production-potential, 2022.
|
[49] |
SANJUAN B, GOURCEROL B, MILLOT R, et al. Lithium-rich geothermal brines in Europe: An up-date about geochemical characteristics and implications for potential Li resources[J]. Geothermics, 2022, 101: 102385. doi: 10.1016/j.geothermics.2022.102385
|
[50] |
STRINGFELLOW W T, DOBSON P F. Technology for the recovery of lithium from geothermal brines[J]. Energies, 2021, 14(20): 6805. doi: 10.3390/en14206805
|
[51] |
LAURA H, HELMUT E, MAGDALENA G Z, et al. Lithium recovery from geothermal brine – an investigation into the desorption of lithium ions using manganese oxide adsorbents[J]. Energy Advances, 2022, 1: 877-885. doi: 10.1039/D2YA00099G
|