[1] Intergovernmental Panel on Climate Change (IPCC), Global Warming of 1.5 ℃, in An IPCC special report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [R]. Cambridge University Press, Cambridge, UK and NewYork, NY, USA, 2018.
[2] TOLLEFSON J. Clock ticking on climate action[J]. Nature, 2018, 562: 172. doi: 10.1038/d41586-018-06876-2
[3] TANS P. National oceanic and atmospheric administration (NOAA)/ESRL. "Annual mean carbon dioxide data"[EB/OL]. [2024-03-01] https://gml.noaa.gov/ccgg/trends/data.html,2023.
[4] GORNITZ V, LEBEDEFF S, HANSEN J. Global sea level trend in the past century[J]. Science, 1982, 215(4540): 1611-1614. doi: 10.1126/science.215.4540.1611
[5] MCBEAN G. Climate change and extreme weather: a basis for action[J]. Natural Hazards, 2004, 31(1): 177-190. doi: 10.1023/B:NHAZ.0000020259.58716.0d
[6] Council for Science and Technology. Achieving net zero carbon emissions through a whole systems approach: CST letter[R]. Council for Science and Technology, London, UK, 2020.
[7] Canadian Institute for Climate Choices. Canada’s net zero future: finding our way in the global transition [R]. Canadian Institute for Climate Choices, Canada, 2020.
[8] BAYER P, AKLIN M. The European Union emissions trading system reduced CO2 emissions despite low prices[J]. Proceedings of the National Academy of Sciences, 2020, 117(16): 8804-8812. doi: 10.1073/pnas.1918128117
[9] OLIVIER J G J, PETERS J A H W, Trends in global CO2 and total greenhouse gas emissions [R]. PBL Netherlands Environmental Assessment Agency, The Hague, 2020.
[10] WEI C. Historical trend and drivers of China’s CO2 emissions from 2000 to 2020 [J]. Environment, Development and Sustainability, 2022, .
[11] CRIPPA M, GUIZZARDI D, BANJA M, et al, CO2 emissions of all world countries – JRC/IEA/PBL 2022 Report [R]. Publications Office of the European Union, Luxembourg, 2022.
[12] LIU Z, DENG Z, DAVIS S, et al. Monitoring global carbon emissions in 2022[J]. Nature Reviews Earth & Environment, 2023, 4(4): 205-206.
[13] 黄维和, 李玉星, 陈朋超. 碳中和愿景下中国二氧化碳管道发展战略[J]. 天然气工业, 2023, 43(7): 1-9.
[14] 桑树勋, 刘世奇, 朱前林, 等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报, 2023, 48(7): 2700-2716.
[15] 环境保护部, 固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范: HJ 75-2017 [S]. 北京: 中国环境出版社, 2017.
[16] The Departments and Agencies of the Federal Government, Continuous emission monitoring, in Protection of Environment [S]. New York: National Archives, 2023.
[17] European Committee for Standization, Sationalry source emissions - Guidance on the application of EN ISO 16911-1[S]. London: BSI Standards Limited, 2017.
[18] MUSSATTI D C, GROEBER M, MALONEY D, et al, Generic equipment and devices, in EPA air pollution control cost manual (Sixth Editon), USEP Agency, Editor. 2002: North Carolian.
[19] JERNIGAN J R, VOS R. An overview of the continuous emission monitoring thechnologies and equipment installed by the USA electric utility industry to comply with the USA enivironmental protection agency acid rain monitoring program [C]//The third international symposium on air quality management at urban, regional and global scales. Istanbul, Turkey, 2005.
[20] 国家能源局, 《火电厂烟气二氧化碳排放连续监测技术规范》及编制说明: DL/T 2376-2021 [S]. 北京: 中国电力出版社, 2021.
[21] DINH T V, KIM J C. Moisture removal techniques for a continuous emission monitoring system: a review[J]. Atmosphere, 2021, 12(1): 61. doi: 10.3390/atmos12010061
[22] DINH T V, CHOI I Y, SON Y S, et al. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction[J]. Sensors and Actuators B: Chemical, 2016, 231: 529-538. doi: 10.1016/j.snb.2016.03.040
[23] U. S. Environmental Protection Agency. An operator's guide to eliminating bias in CEM systems: EPA/430/R-94-016 [S]. Washington, DC, 1994.
[24] 夏玲君, 刘立新, 周凌晞, 等. 改进的大气CO2、CH4、N2O、CO在线观测FTIR系统[J]. 环境科学, 2013, 34(11): 4159-4164.
[25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 大气二氧化碳(CO2)光腔衰荡光谱观测系统: GB/T 34415-2017 [S]. 北京: 中国标准出版社, 2017.
[26] 陈剑虹, 孙超越, 林志强, 等. 基于TDLAS技术的CO2浓度检测方法研究[J]. 电子测量与仪器学报, 2022, 36(6): 229-235.
[27] 潘甫钱, 胡斌, 梁晓瑜, 等. 非色散红外CO2传感器温度补偿方法研究[J]. 激光与红外, 2023, 53(6): 887-894.
[28] 环境保护部. 固定污染源废气二氧化碳的测定 非分散红外吸收法(编制说明): HJ 870-2017 [S]. 北京: 中国环境出版社, 2018.
[29] 国家环境保护局, 国家技术监督局. 固定污染源排气中颗粒物测定与气态污染物采样方法: GB/T 16157-1996 [S]. 北京: 中国环境科学出版社, 1996.
[30] KLOPFENSTEIN J R. Air velocity and flow measurement using a Pitot tube[J]. ISA Transactions, 1998, 37(4): 257-263. doi: 10.1016/S0019-0578(98)00036-6
[31] 中华人民共和国国家发展和改革委员会. 压力传感器: JB/T 6170-2006 [S]. 北京: 机械工业出版社, 2006.
[32] 上海市环境科学学会. 固定污染源废气湿度的测定 阻容法: T/SSESB 1-2020 [S]. 上海: 上海市环境科学学会, 2020.
[33] 国家市场监督管理总局. 皮托管: JJG 518-2023 [S]. 北京: 中国标准出版社, 2023.
[34] 杨美昭, 张亮, 方立德, 等. 对向测量皮托管国际比对[J]. 计量学报, 2022, 43(8): 1050-1057.
[35] JOHNSON A, SHINDER I, MOLDOVER M, et al, Progress towards accurate monitoring of flue gas emissions[C]// International Measurement Confederation, International Symposium on Fluid Flow Measurement (10th ISFFM), Santiago de Querétaro, Mexico, 2018.
[36] 齐亚兵, 唐承卓, 贾宏磊. 工业烟气湿法脱硫技术的发展现状及研究新进展[J]. 材料导报, 2022, 36(Z1): 88-96.
[37] 梅欢. 直接换热烟气提水技术及其工程应用[J]. 电力科技与环保, 2021, 37(2): 16-21.
[38] The International Organization for Standardization (ISO). Measurement of fluid flow in closed conduits-Ultrasonic meters for gas-Part1: Meters for custody transfer and allocation measurement: ISO 17089-1: 2019 [S]. Switzerland: , 2019.