[1] LE MOAL M, GASCUEL-ODOUX C, MéNESGUEN A, et al. Eutrophication: A new wine in an old bottle?[J]. Science of the Total Environment, 2019, 651: 1-11. doi: 10.1016/j.scitotenv.2018.09.139
[2] KAKADE A, SALAMA E-S, HAN H, et al. World eutrophic pollution of lake and river: Biotreatment potential and future perspectives[J]. Environmental Technology & Innovation, 2021, 23: 101604.
[3] HUO S, MA C, XI B, et al. Development of methods for establishing nutrient criteria in lakes and reservoirs: A review[J]. Journal of Environmental Sciences, 2018, 67: 54-66. doi: 10.1016/j.jes.2017.07.013
[4] 孔范龙, 郗敏, 徐丽华, 等. 富营养化水体的营养盐限制性研究综述[J]. 地球环境学报, 2016, 7(02): 121-129.
[5] SCHINDLER D W, HECKY R E, FINDLAY D L, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment[J]. Proceedings of the National Academy of Sciences, 2008, 105(32): 11254-11258. doi: 10.1073/pnas.0805108105
[6] XIAO M, BURFORD M A, WOOD S A, et al. Schindler's legacy: from eutrophic lakes to the phosphorus utilization strategies of cyanobacteria[J]. FEMS Microbiology Reviews, 2022, 46(6): fuac029. doi: 10.1093/femsre/fuac029
[7] U. S. Environmental Protection Agency. Nutrient Criteria Technical Guidance Manual [EB/OL]. [2024-2-28]. https://www.epa.gov/sites/default/files/2018-10/documents/nutrient-criteria-manual-lakes-reservoirs.pdf, 2000.
[8] WANG Y T, ZHANG T Q, ZHAO Y C, et al. Characterization of sedimentary phosphorus in Lake Erie and on-site quantification of internal phosphorus loading[J]. Water Research, 2021, 188: 116525. doi: 10.1016/j.watres.2020.116525
[9] KRONVANG B, JEPPESEN E, CONLEY D J, et al. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters[J]. Journal of Hydrology, 2005, 304(1-4): 274-288. doi: 10.1016/j.jhydrol.2004.07.035
[10] 秦伯强, 杨柳燕, 陈非洲, 等. 湖泊富营养化发生机制与控制技术及其应用[J]. 科学通报, 2006(16): 1857-1866. doi: 10.3321/j.issn:0023-074X.2006.16.001
[11] SUN C, ZHONG J, PAN G, et al. Controlling internal nitrogen and phosphorus loading using Ca-poor soil capping in shallow eutrophic lakes: Long-term effects and mechanisms[J]. Water Research, 2023, 233: 119797. doi: 10.1016/j.watres.2023.119797
[12] 马鑫雨, 杨盼, 张曼, 等. 湖泊沉积物磷钝化材料的研究进展[J]. 湖泊科学, 2022, 34(1): 1-17. doi: 10.18307/2022.0101
[13] WANG Z, LU S, WU D, et al. Control of internal phosphorus loading in eutrophic lakes using lanthanum-modified zeolite[J]. Chemical Engineering Journal, 2017, 327: 505-513. doi: 10.1016/j.cej.2017.06.111
[14] LüRLING M, WAAJEN G, VAN OOSTERHOUT F. Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication[J]. Water Research, 2014, 54: 78-88. doi: 10.1016/j.watres.2014.01.059
[15] DITHMER L, NIELSEN U G, LUNDBERG D, et al. Influence of dissolved organic carbon on the efficiency of P sequestration by a lanthanum modified clay[J]. Water Research, 2016, 97: 39-46. doi: 10.1016/j.watres.2015.07.003
[16] DE VICENTE I, JENSEN H S, ANDERSEN F Ø. Factors affecting phosphate adsorption to aluminum in lake water: Implications for lake restoration[J]. Science of the Total Environment, 2008, 389(1): 29-36. doi: 10.1016/j.scitotenv.2007.08.040
[17] YIN H, DOUGLAS G B, CAI Y, et al. Remediation of internal phosphorus loads with modified clays, influence of fluvial suspended particulate matter and response of the benthic macroinvertebrate community[J]. Science of the Total Environment, 2018, 610-611: 101-110. doi: 10.1016/j.scitotenv.2017.07.243
[18] LI X, ZHANG Z, XIE Q, et al. Immobilization and Release Behavior of Phosphorus on Phoslock-Inactivated Sediment under Conditions Simulating the Photic Zone in Eutrophic Shallow Lakes[J]. Environmental Science & Technology, 2019, 53(21): 12449-12457.
[19] YANG C, YANG P, YIN H. In situ control of internal nutrient loading and fluxes in the confluence area of an eutrophic lake with combined P inactivation agents and modified zeolite[J]. Science of the Total Environment, 2021, 775: 145745. doi: 10.1016/j.scitotenv.2021.145745
[20] 刘新, 王秀, 赵珍, 等. 风浪扰动对底泥内源磷钝化效果的影响[J]. 中国环境科学, 2017, 37(8): 3064-3071.
[21] Spears B M, LüRLING M, Yasseri S, et al. Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: An analysis of water column lanthanum data from 16 case study lakes[J]. Water Research, 2013, 47: 5930-5942. doi: 10.1016/j.watres.2013.07.016
[22] Spears B M, Mackay B E, Yasseri S, et al. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock®)[J]. Water Research, 2016, 97: 111-121. doi: 10.1016/j.watres.2015.08.020
[23] LüRLING M, FAASSEN E J. Controlling toxic cyanobacteria: Effects of dredging and phosphorus-binding clay on cyanobacteria and microcystins[J]. Water Research, 2012, 46(5): 1447-1459. doi: 10.1016/j.watres.2011.11.008
[24] ZHANG Z, WANG Z, XIE Q, et al. Inactivation of phosphorus in a highly eutrophic pond using Zeofixer® to eliminate the free-floating aquatic plant (Spirodela polyrhiza)[J]. Ecological Engineering, 2024, 199: 107171. doi: 10.1016/j.ecoleng.2023.107171
[25] 国家环境保护总局, 水和废水监测分析方法编委会编. 水和废水监测分析方法 第4版[M]. 北京: 中国环境科学出版社, 2002: 784.
[26] JIN S, LIN J, ZHAN Y. Immobilization of phosphorus in water-sediment system by iron-modified attapulgite, calcite, bentonite and dolomite under feed input condition: Efficiency, mechanism, application mode effect and response of microbial communities and iron mobilization[J]. Water Research, 2023, 247: 120777. doi: 10.1016/j.watres.2023.120777
[27] LI X, KUANG Y, CHEN J, et al. Competitive adsorption of phosphate and dissolved organic carbon on lanthanum modified zeolite[J]. Journal of Colloid and Interface Science, 2020, 574: 197-206. doi: 10.1016/j.jcis.2020.04.050
[28] 郭长滨, 李蒙蒙 , 冯梦晗 , 等 . 铈掺杂镧基钙钛矿制备及对水体磷酸盐和植酸的吸附性能 [J]. 化工进展,2024,43(8): 4748-4756.
[29] 路一帆, 周浩, 黄梅. 纳米碳酸镧的合成及其对污染水体中磷的去除[J]. 环境工程学报, 2021, 15(10): 3204-3213.
[30] XIE J, WANG Z, FANG D, et al. Green synthesis of a novel hybrid sorbent of zeolite/lanthanum hydroxide and its application in the removal and recovery of phosphate from water[J]. Journal of Colloid and Interface Science, 2014, 423: 13-19. doi: 10.1016/j.jcis.2014.02.020
[31] DE VICENTE I, HUANG P, ANDERSEN F Ø, et al. Phosphate Adsorption by Fresh and Aged Aluminum Hydroxide. Consequences for Lake Restoration[J]. Environmental Science & Technology, 2008, 42(17): 6650-6655.
[32] 王哲, 王丽玲, 王雅娟, 等. 受污染城市河道沉积物磷吸附特征及其影响因素[J]. 环境工程学报, 2023, 17(7): 2412-2423.
[33] 段磊, 吕佳佳, 孙亚乔. 黄土包气带中氨氮吸附/解吸机理研究[J]. 干旱地区农业研究, 2021, 39(2): 184-193. doi: 10.7606/j.issn.1000-7601.2021.02.24
[34] HAGHSERESHT F, WANG S, DO D D. A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters[J]. Applied Clay Science, 2009, 46(4): 369-375. doi: 10.1016/j.clay.2009.09.009
[35] YIN H, YANG P, KONG M, et al. Use of lanthanum/aluminum co-modified granulated attapulgite clay as a novel phosphorus (P) sorbent to immobilize P and stabilize surface sediment in shallow eutrophic lakes[J]. Chemical Engineering Journal, 2020, 385: 123395. doi: 10.1016/j.cej.2019.123395
[36] BERKOWITZ J, ANDERSON M A, AMRHEIN C. Influence of aging on phosphorus sorption to alum floc in lake water[J]. Water Research, 2006, 40(5): 911-916. doi: 10.1016/j.watres.2005.12.018
[37] GIBBS M, ÖZKUNDAKCI D. Effects of a modified zeolite on P and N processes and fluxes across the lake sediment–water interface using core incubations[J]. Hydrobiologia, 2010, 661(1): 21-35.
[38] ZAMPARAS M, DROSOS M, GEORGIOU Y, et al. A novel bentonite-humic acid composite material BephosTM for removal of phosphate and ammonium from eutrophic waters[J]. Chemical Engineering Journal, 2013, 225: 43-51. doi: 10.1016/j.cej.2013.03.064
[39] 加)卡尔夫(KALFF J. ) 湖沼学: 内陆水生态系统[M]. 北京: 高等教育出版社, 2011.
[40] 甘磊, 钟萍, 苏玲, 等. 镧改性膨润土对浅水湖泊水体磷浓度和沉积物磷形态的影响[J]. 湖泊科学, 2019, 31(5): 1219-1228.
[41] WANG Z, SHI M, LI J, et al. Sorption of dissolved inorganic and organic phosphorus compounds onto iron-doped ceramic sand[J]. Ecological Engineering, 2013, 58: 286-295. doi: 10.1016/j.ecoleng.2013.07.052
[42] RUTTENBERG K C, SULAK D J. Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater[J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4095-4112. doi: 10.1016/j.gca.2010.10.033
[43] 陈晓冉, 李睿羚, 俞昊君, 等. 粉煤灰基沸石分子筛对水中氨氮的吸附[J]. 化工环保, 2024, 44(2): 205-212. doi: 10.3969/j.issn.1006-1878.2024.02.007
[44] 杨海全, 陈敬安, 刘文, 等. 草海底泥原位钝化工程示范及其生态环境效应[J]. 环境工程学报, 2017, 11(7): 4437-4444.
[45] ÖZKUNDAKCI D, HAMILTON D P, SCHOLES P. Effect of intensive catchment and in-lake restoration procedures on phosphorus concentrations in a eutrophic lake[J]. Ecological Engineering, 2010, 36(4): 396-405. doi: 10.1016/j.ecoleng.2009.11.006
[46] BISHOP W M, MCNABB T, CORMICAN I, et al. Operational Evaluation of Phoslock Phosphorus Locking Technology in Laguna Niguel Lake, California[J]. Water, Air, & Soil Pollution, 2014, 225(7): 1-11.
[47] NüRNBERG G K, LAZERTE B D. Trophic state decrease after lanthanum-modified bentonite (Phoslock) application to a hyper-eutrophic polymictic urban lake frequented by Canada geese (Branta canadensis)[J]. Lake and Reservoir Management, 2016, 32(1): 74-88. doi: 10.1080/10402381.2015.1133739
[48] 秦伯强. 长江中下游浅水湖泊富营养化发生机制与控制途径初探[J]. 湖泊科学, 2002, 14(3): 193-202. doi: 10.3321/j.issn:1003-5427.2002.03.001
[49] REITZEL K, JENSEN S H, EGEMOSE S. pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminum[J]. Water Research, 2013, 47(3): 1409-1420. doi: 10.1016/j.watres.2012.12.004