[1] LI X Y, NAN H Y, JIANG H R, et al. Research trends on phosphorus removal from wastewater: A review and bibliometric analysis from 2000 to 2022[J]. Journal of Water Process Engineering, 2023, 55: 104201. doi: 10.1016/j.jwpe.2023.104201
[2] 单苏洁. 镧基碳酸盐吸附剂对水中磷的去除效能及机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
[3] 谢禹, 陈仁杰, 陶正凯, 等. 生活污水强化除磷技术研究进展[J]. 应用化工, 2021, 50(3): 821-824. doi: 10.3969/j.issn.1671-3206.2021.03.053
[4] SONG W, ZHANG L, GUO B, et al. Quaternized straw supported by La(OH)3 nanoparticles for highly-selective removal of phosphate in presence of coexisting anions: Synergistic effect and mechanism[J]. Separation and Purification Technology, 2023, 324: 124500. doi: 10.1016/j.seppur.2023.124500
[5] CAO Y, WU X, LI B, et al. Ca–La layered double hydroxide (LDH) for selective and efficient removal of phosphate from wastewater[J]. Chemosphere, 2023, 325: 138378. doi: 10.1016/j.chemosphere.2023.138378
[6] 崔婉莹, 艾恒雨, 张世豪, 等. 改性吸附剂去除废水中磷的应用研究进展[J]. 化工进展, 2020, 39(10): 4210-4226.
[7] LIN Z, CHEN J. Magnetic Fe3O4@MgAl-LDH@ La(OH)3 composites with a hierarchical core-shell structure for phosphate removal from wastewater and inhibition of labile sedimentary phosphorus release[J]. Chemosphere, 2021, 264: 128551. doi: 10.1016/j.chemosphere.2020.128551
[8] WANG Z Y, KOH K Y, YANG Y, et al. Design and optimization of an innovative lanthanum/chitosan bead for efficient phosphate removal and study of process performance and mechanisms[J]. Chemosphere, 2022, 306: 135468. doi: 10.1016/j.chemosphere.2022.135468
[9] YIN X J, LI X, PETROPOULOS E, et al. Phosphate removal from actual wastewater via La(OH)3-C3N4 adsorption: Performance, mechanisms and applicability[J]. Science of the Total Environment, 2022, 814: 152791. doi: 10.1016/j.scitotenv.2021.152791
[10] ZHANG B A, CHEN N, FENG C P, et al. Adsorption for phosphate by crosslinked/non-crosslinked-chitosan-Fe (III)complex sorbents: characteristic and mechanism[J]. Chemical Engineering Journal, 2018, 353: 361-372. doi: 10.1016/j.cej.2018.07.092
[11] LIU S, ZHAO S, FAN F, et al. Magnetically separable and recyclable lanthanum/iron co-modified attapulgite: A sustainable option to efficiently control phosphate loading[J]. Journal of Cleaner Production, 2022, 348: 131294. doi: 10.1016/j.jclepro.2022.131294
[12] KONG H, WANG J, ZHANG G, et al. Synthesis of three-dimensional porous lanthanum modified attapulgite chitosan hydrogel bead for phosphate removal: Performance, mechanism, cost-benefit analysis[J]. Separation and Purification Technology, 2023, 320: 124098. doi: 10.1016/j.seppur.2023.124098
[13] 曾瑞琪, 苗钟化, 李苇舟, 等. 羧甲基纤维素钠对低酯果胶凝胶流变特性及凝胶形成的影响[J]. 食品与发酵工业, 2017, 43(8): 108-114.
[14] 李维浩, 刘杰, 孙治斌, 等. GO/CNC/PVA复合水凝胶制备与性能[J]. 纺织高校基础科学学报, 2022, 35(4): 45-51.
[15] PAN J, LI Y, CHEN K, et al. Enhanced physical and antimicrobial properties of alginate/chitosan composite aerogels based on electrostatic interactions and noncovalent crosslinking[J]. Carbohydrate Polymers, 2021, 266: 118102. doi: 10.1016/j.carbpol.2021.118102
[16] KANG A H, SHANG K, YE D D, et al. Rejuvenated fly ash in poly (vinyl alcohol)-based composite aerogels with high fire safety and smoke suppression[J]. Chemical Engineering Journal, 2017, 327: 992-999. doi: 10.1016/j.cej.2017.06.158
[17] FENG L H, ZHANG Q, JI F Y, et al. Phosphate removal performances of layered double hydroxides (LDH) embedded polyvinyl alcohol/lanthanum alginate hydrogels[J]. Chemical Engineering Journal, 2022, 430: 132754. doi: 10.1016/j.cej.2021.132754
[18] ZHAO Y, GUO L, SHEN W, et al. Function integrated chitosan-based beads with throughout sorption sites and inherent diffusion network for efficient phosphate removal[J]. Carbohydrate Polymers, 2020, 230: 115639. doi: 10.1016/j.carbpol.2019.115639
[19] WAN J, ZHU C, HU J, et al. Zirconium-loaded magnetic interpenetrating network chitosan/poly (vinyl alcohol) hydrogels for phosphorus recovery from the aquatic environment[J]. Applied Surface Science, 2017, 423: 484-491. doi: 10.1016/j.apsusc.2017.06.201
[20] 马培根. 壳聚糖为载体的除磷吸附剂的制备及其性能的研究[D]. 北京: 北京化工大学, 2020.
[21] RAJESWARI A, AMALRAJ A, PIUS A. Removal of phosphate using chitosan-polymer composites[J]. Journal of Environmental Chemical Engineering, 2015, 3(4): 2331-2341. doi: 10.1016/j.jece.2015.08.022
[22] WANG B, HU X L, ZHOU D, et al. Highly selective and sustainable clean-up of phosphate from aqueous phase by eco-friendly lanthanum cross-linked polyvinyl alcohol/alginate/palygorskite composite hydrogel beads[J]. Journal of Cleaner Production, 2021, 298: 126878. doi: 10.1016/j.jclepro.2021.126878
[23] ZHOU Y Q, WANG Y L, DONG S X, et al. Phosphate removal by a La(OH)3 loaded magnetic MAPTAC-based cationic hydrogel: Enhanced surface charge density and Donnan membrane effect[J]. Journal of Environmental Sciences, 2022, 113: 26-39. doi: 10.1016/j.jes.2021.05.041
[24] CHEN L, LI Y Z, SUN Y B, et al. La(OH)3 loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability[J]. Chemical Engineering Journal, 2019, 360: 342-348. doi: 10.1016/j.cej.2018.11.234
[25] LIU S, FAN F Q, NI Z K, et al. Sustainable lanthanum-attapulgite/alginate hydrogels with enhanced mechanical strength for selective phosphate scavenging[J]. Journal of Cleaner Production, 2023, 385: 135649. doi: 10.1016/j.jclepro.2022.135649
[26] XI H, LI Q, YANG Y, et al. Highly effective removal of phosphate from complex water environment with porous Zr-bentonite alginate hydrogel beads: Facile synthesis and adsorption behavior study[J]. Applied Clay Science, 2021, 201: 105919. doi: 10.1016/j.clay.2020.105919
[27] 曾学阳. 功能化氢氧化锆交联聚乙烯醇微球的制备及除磷特性研究[D]. 广州: 广州大学, 2019.
[28] WU N, NIU F, LANG W, et al. Highly efficient flame-retardant and low-smoke-toxicity poly (vinyl alcohol)/alginate/ montmorillonite composite aerogels by two-step crosslinking strategy[J]. Carbohydrate Polymers, 2019, 221: 221-230. doi: 10.1016/j.carbpol.2019.06.007
[29] LI X, LI Y, YE Z. Preparation of macroporous bead adsorbents based on poly (vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution[J]. Chemical Engineering Journal, 2011, 178: 60-68. doi: 10.1016/j.cej.2011.10.012
[30] KONG H, LI Q, ZHENG X, et al. Lanthanum modified chitosan-attapulgite composite for phosphate removal from water: Performance, mechanisms and applicability[J]. International Journal of Biological Macromolecules, 2023, 224: 984-997. doi: 10.1016/j.ijbiomac.2022.10.183
[31] 万骏. 基于功能设计的水凝胶对水中磷酸盐去除研究[D]. 武汉: 华中科技大学, 2019.
[32] WANG Y, LI J, YUAN Y, et al. La(OH)3 loaded magnetic nanocomposites derived from sugarcane bagasse cellulose for phosphate adsorption: characterization, performance and mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 127060. doi: 10.1016/j.colsurfa.2021.127060
[33] YU Y, CHEN J P. Key factors for optimum performance in phosphate removal from contaminated water by a Fe–Mg–La tri-metal composite sorbent[J]. Journal of Colloid and Interface Science, 2015, 445: 303-311. doi: 10.1016/j.jcis.2014.12.056
[34] WANG S, WANG Y, DONG S, et al. Synchronously construction of hierarchical porous channels and cationic surface charge on lanthanum-hydrogel for rapid phosphorus removal[J]. Environmental Research, 2023, 236: 116730. doi: 10.1016/j.envres.2023.116730
[35] QING Z L, WANG L J, QIN Q R, et al. A stable rare earth-based layered double hydroxide embedded chitosan hydrogel beads for enhanced phosphate removal from aqueous solution: Performance, mechanisms and applicability[J]. Journal of Water Process Engineering, 2024, 59: 104989. doi: 10.1016/j.jwpe.2024.104989
[36] HU H, TONG Y W, HE Y L. Current insight into enhanced strategies and interaction mechanisms of hydrogel materials for phosphate removal and recovery from wastewater[J]. Science of the Total Environment, 2023: 164514.
[37] WU Z, HAN Y, ZAN F X, et al. Highly efficient removal of phosphate by La-diatomite and sodium alginate composite hydrogel beads[J]. Environmental Science: Water Research & Technology, 2023, 9(4): 1205-1215.
[38] CHEN Z H, LUO H Y, RONG H W. Development of polyaminated chitosan-zirconium (IV) complex bead adsorbent for highly efficient removal and recovery of phosphorus in aqueous solutions[J]. International Journal of Biological Macromolecules, 2020, 164: 1183-1193. doi: 10.1016/j.ijbiomac.2020.07.218
[39] LAN Z C, LIN Y, YANG C P. Lanthanum-iron incorporated chitosan beads for adsorption of phosphate and cadmium from aqueous solutions[J]. Chemical Engineering Journal, 2022, 448: 137519. doi: 10.1016/j.cej.2022.137519
[40] DAI M, ZHANG Y, ZHANG L, et al. Multipurpose Polysaccharide-based composite hydrogel with magnetic and thermoresponsive properties for phosphorus and enhanced copper (II) removal[J]. Composites Part A: Applied Science and Manufacturing, 2022, 157: 106916. doi: 10.1016/j.compositesa.2022.106916
[41] MENDEZ J C, HIEMSTRA T. Carbonate adsorption to ferrihydrite: competitive interaction with phosphate for use in soil systems[J]. ACS Earth and Space Chemistry, 2018, 3(1): 129-141.
[42] 李小林. La(OH)3负载的磁性阳离子水凝胶对水中低浓度磷的吸附特征及其放大制备研究[D]. 北京: 北京林业大学, 2021.
[43] JIA Z, ZENG W, XU H, et al. Adsorption removal and reuse of phosphate from wastewater using a novel adsorbent of lanthanum-modified platanus biochar[J]. Process Safety and Environmental Protection, 2020, 140: 221-232. doi: 10.1016/j.psep.2020.05.017
[44] 徐冉. La(OH)3改性磁性CoFe2O4纳米复合材料的制备及其吸附磷酸盐的研究[D]. 长沙: 湖南大学, 2022.
[45] WANG G Y, YUE X Z, ZHANG S R, et al. La(III) loaded Fe(III) cross-linked chitosan composites for efficient removal of phosphate from wastewater: Performance and mechanisms[J]. Journal of Cleaner Production, 2022, 379: 134833. doi: 10.1016/j.jclepro.2022.134833
[46] 朱畅. 含镧互穿网络水凝胶对水中磷的吸附研究[D]. 武汉: 华中科技大学, 2019.
[47] LIU B, YU Y Y, HAN Q F, et al. Fast and efficient phosphate removal on lanthanum-chitosan composite synthesized by controlling the amount of cross-linking agent[J]. International Journal of Biological Macromolecules, 2020, 157: 247-258. doi: 10.1016/j.ijbiomac.2020.04.159
[48] ZHANG S P, DING J, TIAN D Y. Incorporation of MIL-101(Fe or Al) into chitosan hydrogel adsorbent for phosphate removal: Performance and mechanism[J]. Journal of Solid State Chemistry, 2022, 306: 122709. doi: 10.1016/j.jssc.2021.122709
[49] ZHANG W, WU Y P, CHEN H L, et al. Efficient phosphate removal from water by multi-engineered PVA/SA matrix double network hydrogels: Influencing factors and removal mechanism[J]. Separation and Purification Technology, 2024: 126261.
[50] WANG B, ZHANG W, LI L, et al. Novel talc encapsulated lanthanum alginate hydrogel for efficient phosphate adsorption and fixation[J]. Chemosphere, 2020, 256: 127124. doi: 10.1016/j.chemosphere.2020.127124
[51] CHEN B, LI Y, DU Q, et al. Synthesis, characterization, adsorption properties and mechanism of gravity-assisted zirconium alginate hydrogel fiber for removal of methylene blue from water[J]. Materials Today Communications, 2022, 32: 104004. doi: 10.1016/j.mtcomm.2022.104004
[52] WU X, LEI Y, ZHANG Y, et al. Alkali-treated yttrium-containing chitosan-based hydrogels for phosphate recover with highly selective in wide pH aqueous solution[J]. Surfaces and Interfaces, 2024, 45: 103851. doi: 10.1016/j.surfin.2024.103851
[53] WU Y, LI X M, YANG Q, et al. Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents[J]. Journal of Environmental Management, 2019, 231: 370-379.
[54] ZHANG Y Z, QIN J F, WANG X J, et al. Advanced treatment of phosphorus-containing tail water by Fe-Mg-Zr layered double hydroxide beads: Performance and mechanism[J]. Journal of Environmental Management, 2021, 296: 113203. doi: 10.1016/j.jenvman.2021.113203
[55] LIU X, ZHANG L. Removal of phosphate anions using the modified chitosan beads: Adsorption kinetic, isotherm and mechanism studies[J]. Powder Technology, 2015, 277: 112-119. doi: 10.1016/j.powtec.2015.02.055
[56] LIU Y, ZHONG D, XU Y, et al. Adsorption of phosphate in water by La/Al bimetallic-organic frameworks-chitosan composite with wide adaptable pH range[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110309. doi: 10.1016/j.jece.2023.110309