[1] |
刘诗婷, 么强, 陈芳, 等. 腐殖酸联合铁氧化物去除水体中重金属的研究进展[J]. 工业水处理, 2020, 40(5): 7-11. doi: 10.11894/iwt.2019-0574
|
[2] |
汪涛, 高国龙, 王庆, 等. 无机有机复合材料对重金属污染土壤的修复效应[J]. 环境科技, 2018, 31(5): 29-34. doi: 10.3969/j.issn.1674-4829.2018.05.007
|
[3] |
肖琴, 刘有才, 曹占芳, 等. 生物炭吸附废水中重金属离子的研究进展[J]. 环境科技, 2019, 32(1): 68-73. doi: 10.3969/j.issn.1674-4829.2019.01.014
|
[4] |
谢超然, 王兆炜, 朱俊民, 等. 核桃青皮生物炭对重金属铅、铜的吸附特性研究[J]. 环境科学学报, 2016, 36(4): 1190-1198.
|
[5] |
FAN S S, LI H, WANG Y, et al. Cadmium removal from aqueous solution by biochar obtained by co-pyrolysis of sewage sludge with tea waste[J]. Research Chemical Intermediates, 2018, 44(1): 135-154. doi: 10.1007/s11164-017-3094-1
|
[6] |
GUO X J, HE X S, LI C W, et al. The binding properties of copper and lead onto compost-derived DOM using Fourier-transform infrared, UV-vis and fluorescence spectra combined with two-dimensional correlation analysis[J]. Journal of Hazardous Materials, 2019, 365: 457-466. doi: 10.1016/j.jhazmat.2018.11.035
|
[7] |
LIU L, FAN S S. Removal of cadmium in aqueous solution using wheat straw biochar: effect of minerals and mechanism[J]. Environment Science and Pollution Research, 2018, 25(9): 8688-8700. doi: 10.1007/s11356-017-1189-2
|
[8] |
TRAKAL L, VESELSKá V, SAFARíK I, et al. Lead and cadmium sorption mechanisms on magnetically modified biochars[J]. Bioresource Technology, 2016, 203: 318-324. doi: 10.1016/j.biortech.2015.12.056
|
[9] |
XIE T, REDDY K R, WANG C W, et al. Characteristics and applications of biochar for environmental remediation: a review[J]. Critical Reviews in Environment Science and Technology, 2015, 45(9): 939-969. doi: 10.1080/10643389.2014.924180
|
[10] |
寇一鸣, 周苡纯, 陆沁凝, 等. 基于落叶资源化利用的景观生态砖开发研究[J]. 安徽农业科学, 2020, 48(20): 225-228. doi: 10.3969/j.issn.0517-6611.2020.20.059
|
[11] |
聂阳, 姜高亮, 张雅君, 等. 基于枯枝落叶堆肥资源化利用初探[J]. 广东化工, 2017, 44(15): 40-41+60. doi: 10.3969/j.issn.1007-1865.2017.15.019
|
[12] |
JUNG K W, LEE S Y, LEE Y J. Hydrothermal synthesis of hierarchically structured birnessite-type MnO2/biochar composites for the adsorptive removal of Cu(II) from aqueous media[J]. Bioresource Technology, 2018, 260: 204-212. doi: 10.1016/j.biortech.2018.03.125
|
[13] |
SHENVI S S, ISLOOR A M, ISMAIL A F, et al. Humic acid based biopolymeric membrane for effective removal of methylene blue and rhodamine B[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 4965-4975.
|
[14] |
FEBRIANTO J, KOSASIH A N, SUNARSO J, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies[J]. Journal of Hazardous Materials, 2009, 162(2/3): 616-645.
|
[15] |
WIBOWO E, ROKHMAT M, SUTISNA, et al. Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics[J]. Desalination, 2017, 409: 146-156. doi: 10.1016/j.desal.2017.01.026
|
[16] |
HU X J, LIU Y G, ZENG G M, et al. Effects of background electrolytes and ionic strength on enrichment of Cd(II) ions with magnetic graphene oxide-supported sulfanilic acid[J]. Journal of Colloid and Interface Science, 2014, 435: 138-144. doi: 10.1016/j.jcis.2014.08.054
|
[17] |
HUANG X K, YIN H C, ZHANG H, et al. Pyrolysis characteristics, gas products, volatiles, and thermo-kinetics of industrial lignin via TG/DTG-FTIR/MS and in-situ Py-PI-TOF/MS[J]. Energy, 2022, 259: 125062. doi: 10.1016/j.energy.2022.125062
|
[18] |
王震宇, 刘国成, XING M, 等. 不同热解温度生物炭对Cd(Ⅱ)的吸附特性[J]. 环境科学, 2014, 35(12): 4735-4744.
|
[19] |
程启明, 黄青, 刘英杰, 等. 花生壳与花生壳生物炭对镉离子吸附性能研究[J]. 农业环境科学学报, 2014, 33(10): 2022-2029. doi: 10.11654/jaes.2014.10.020
|
[20] |
LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46(3): 854-862. doi: 10.1016/j.watres.2011.11.058
|
[21] |
LIU L H, YUE T T, LIU R, et al. Efficient absorptive removal of Cd(II) in aqueous solution by biochar derived from sewage sludge and calcium sulfate[J]. Bioresource Technology, 2021, 336: 125333. doi: 10.1016/j.biortech.2021.125333
|
[22] |
张立志, 易平, 方丹丹, 等. 超顺磁性纳米Fe3O4@SiO2功能化材料对镉的吸附机制[J]. 环境科学, 2021, 42(6): 2917-2927.
|
[23] |
ZHANG S Y, ARKIN K, ZHENG Y X, et al. Preparation of a composite material based on self-assembly of biomass carbon dots and sodium alginate hydrogel and its green, efficient and visual adsorption performance for Pb2+[J]. Journal Environment Chemical Engineering, 2022, 10(1): 106921. doi: 10.1016/j.jece.2021.106921
|
[24] |
丁洋, 靖德兵, 周连碧, 等. 板栗内皮对水溶液中镉的吸附研究[J]. 环境科学学报, 2011, 31(9): 1933-1941.
|
[25] |
NIBOU D, MEKATEL H, AMOKRANE S, et al. Adsorption of Zn2+ ions onto NaA and NaX zeolites: Kinetic, equilibrium and thermodynamic studies[J]. Journal of Hazardous Materials, 2010, 173(1-3): 637-646. doi: 10.1016/j.jhazmat.2009.08.132
|
[26] |
来张汇, 吴山, 李涵, 等. 不同热解温度的秸秆源生物炭对Cd(Ⅱ)吸附机理[J]. 南昌大学学报(理科版), 2022, 46(4): 446-453.
|
[27] |
CHEN F, SUN Y S, LIANG C, et al. Adsorption characteristics and mechanisms of Cd2+ from aqueous solution by biochar derived from corn stover[J]. Scientific Reports, 2022, 12(1): 17714. doi: 10.1038/s41598-022-22714-y
|
[28] |
MOHAN D, KUMAR H, SARSWAT A, et al. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars[J]. Chemical Engineering Journal, 2014, 236: 513-528. doi: 10.1016/j.cej.2013.09.057
|
[29] |
PARK J H, WANG J J, KIM S H, et al. Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures[J]. Journal of Colloid and Interface Science, 2019, 553: 298-307. doi: 10.1016/j.jcis.2019.06.032
|
[30] |
ROH H, YU M R, YAKKALA K, et al. Removal studies of Cd(II) and explosive compounds using buffalo weed biochar-alginate beads[J]. Journal of Industial and Engineering Chemistry, 2015, 26: 226-233. doi: 10.1016/j.jiec.2014.11.034
|
[31] |
MUKOME F N D, ZHANG X M, SILVA L C R, et al. Use of Chemical and physical characteristics to investigate trends in biochar feedstocks[J]. Journal of Agricultural and Food Chemistry, 2013, 61(9): 2196-2204. doi: 10.1021/jf3049142
|
[32] |
CHEN X C, CHEN G C, CHEN L G, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution[J]. Bioresource Technology, 2011, 102(19): 8877-8884. doi: 10.1016/j.biortech.2011.06.078
|
[33] |
李力, 陆宇超, 刘娅, 等. 玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J]. 农业环境科学学报, 2012, 31(11): 2277-2283.
|
[34] |
陈再明, 陈宝梁, 周丹丹. 水稻秸秆生物碳的结构特征及其对有机污染物的吸附性能[J]. 环境科学学报, 2013, 33(1): 9-19.
|
[35] |
AKSU Z, ISOGLU I A. Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp[J]. Process Biochemistry, 2005, 40(9): 3031-3044. doi: 10.1016/j.procbio.2005.02.004
|
[36] |
DI NATALE F, LANCIA A, MOLINO A, et al. Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char[J]. Journal of Hazardous Materials, 2007, 145(3): 381-390. doi: 10.1016/j.jhazmat.2006.11.028
|
[37] |
EL-ASHTOUKHY E S Z, AMIN N K, ABDELWAHAB O. Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent[J]. Desalination, 2008, 223(1-3): 162-173. doi: 10.1016/j.desal.2007.01.206
|
[38] |
李乃玮, 陈月琴, 罗维, 等. 壳聚糖/生物炭复合材料对Cr离子的吸附性能[J]. 应用化工, 2022, 51(2): 406-410+425. doi: 10.3969/j.issn.1671-3206.2022.02.021
|
[39] |
HO Y S. Effect of pH on lead removal from water using tree fern as the sorbent[J]. Bioresource Technology, 2005, 96(11): 1292-1296. doi: 10.1016/j.biortech.2004.10.011
|
[40] |
KOLODYNSKA D, WNETRZAK R, LEAHY J J, et al. Kinetic and adsorptive characterization of biochar in metal ions removal[J]. Chemical Engineering Journal, 2012, 197: 295-305. doi: 10.1016/j.cej.2012.05.025
|
[41] |
崔志文, 任艳芳, 王伟, 等. 碱和磁复合改性小麦秸秆生物炭对水体中镉的吸附特性及机制[J]. 环境科学, 2020, 41(7): 3315-3325.
|