[1] VAN LOOSDRECHT M, BRDJANOVIC D. Anticipating the next century of wastewater treatment[J]. Science, 2014, 344(6191): 1452-1453. doi: 10.1126/science.1255183
[2] HAO X D, WANG X Y, LIU R B, et al. Environmental impacts of resource recovery from wastewater treatment plants[J]. Water Research, 2019, 160: 268-277. doi: 10.1016/j.watres.2019.05.068
[3] DE SOUSA R S, MENDES B A, MILEN F P, et al. Aerobic granular sludge: Cultivation parameters and removal mechanisms[J]. Bioresource Technology, 2018, 270: 678-688. doi: 10.1016/j.biortech.2018.08.130
[4] 俞晟, 钟旭东, 胡涛, 等. 好氧颗粒污泥工艺在市政污水处理中的研究与应用[J]. 净水技术, 2018, 37(1): 40-46.
[5] 明婕, 黄子萌, 董清林, 等. 好氧颗粒污泥的性质及形成机制[J]. 水处理技术, 2019, 45(7): 1-5.
[6] JEONG K, KIM D G, KO S O. Adsorption characteristics of effluent organic matter and natural organic matter by carbon based nanomaterials[J]. KSCE Journal of Civil Engineering, 2017, 21(1): 119-126. doi: 10.1007/s12205-016-0421-9
[7] SARMA S J, TAY J H, CHU A. Finding knowledge gaps in aerobic granulation technology[J]. Trends in biotechnology, 2017, 35(1): 66-78. doi: 10.1016/j.tibtech.2016.07.003
[8] 赵彬, 丁雪松, 吴丹青, 等. 高负荷条件下好氧颗粒污泥同步脱氮除碳特性及微生物群落结构分析[J]. 环境工程学报, 2020, 14(2): 295-304. doi: 10.12030/j.cjee.201903202
[9] YI S, ZHUANG W, WU B, et al. Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor[J]. Environmental Science & Technology, 2006, 40(7): 2396-2401.
[10] 杨淑芳, 张健君, 邹高龙, 等. 实际污水培养好氧颗粒污泥及其特性研究[J]. 环境科学, 2014, 35(5): 1850-1856.
[11] PRONK M, ABBAS B, AL-ZUHAIRY S H K, et al. Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge[J]. Applied Microbiology and Biotechnology, 2015, 99(12): 5257-5268. doi: 10.1007/s00253-014-6358-3
[12] NANCHARAIAH Y V, KIRAN KUMAR REDDY G. Aerobic granular sludge technology: mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2018, 247: 1128-1143. doi: 10.1016/j.biortech.2017.09.131
[13] WANG J, WANG X, ZHAO Z, et al. Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor[J]. Applied Microbiology and Biotechnology, 2008, 79(4): 679-685. doi: 10.1007/s00253-008-1466-6
[14] FELZ S, AL-ZUHAIRY S, AARSTAD O A, et al. Extraction of structural extracellular polymeric substances from aerobic granular sludge[J]. Jove-Journal of Visualized Experiments, 2016(115).
[15] FELZ S, VERMEULEN P, VAN LOOSDRECHT M, et al. Chemical characterization methods for the analysis of structural extracellular polymeric substances (EPS)[J]. Water Research, 2019, 157: 201-208. doi: 10.1016/j.watres.2019.03.068
[16] VAN DER HOEK J P, DE FOOIJ H, STRUKER A. Wastewater as a resource: Strategies to recover resources from Amsterdam's wastewater[J]. Resources Conservation and Recycling, 2016, 113: 53-64. doi: 10.1016/j.resconrec.2016.05.012
[17] VAN LEEUWEN K, DE VRIES E, KOOP S, et al. The energy & raw materials factory: Role and potential contribution to the circular economy of the netherlands[J]. Environmental Management, 2018, 61(5): 786-795. doi: 10.1007/s00267-018-0995-8
[18] LIN Y M, SHARMA P K, VAN Loosdrecht M C M. The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge[J]. Water Research, 2013, 47(1): 57-65. doi: 10.1016/j.watres.2012.09.017
[19] ZHANG B, LI W, GUO Y, et al. A sustainable strategy for effective regulation of aerobic granulation: Augmentation of the signaling molecule content by cultivating AHL-producing strains[J]. Water Research, 2020, 169: 115193. doi: 10.1016/j.watres.2019.115193
[20] GUO Y, ZHANG Z, SHI W, et al. Evolution of the sludge mineral composition enhances operation performance of the aerobic granular sludge reactor coupled with iron electrolysis[J]. Journal of Cleaner Production, 2021, 295: 126394. doi: 10.1016/j.jclepro.2021.126394
[21] DA COSTA N P A V, LIBARDI N, SCHAMBECK C M, et al. Impact of additive application on the establishment of fast and stable aerobic granulation[J]. Applied Microbiology and Biotechnology, 2020, 104(13): 5697-5709. doi: 10.1007/s00253-020-10657-1
[22] HAN R, WANG Z, LV J, et al. Multiple effects of humic components on microbially mediated iron redox processes and production of hydroxyl radicals[J]. Environmental Science & Technology, 2022, 56(22): 16419-16427.
[23] 常笑丽, 何士龙, 刘浩. 好氧颗粒污泥快速培养的方法研究[J]. 环境工程, 2015, 33(8): 27-31.
[24] SHI X, NG K K, LI X, et al. Investigation of intertidal wetland sediment as a novel inoculation source for anaerobic saline wastewater treatment[J]. Environmental Science & Technology, 2015, 49(10): 6231-6239.
[25] KÖGEL-KNABNER I, AMELUNG W, CAO Z, et al. Biogeochemistry of paddy soils[J]. Geoderma, 2010, 157(1): 1-14.
[26] LIU Y, FANG H H P. Influences of extracellular polymeric substances (eps) on flocculation, settling, and dewatering of activated sludge[J]. Critical Reviews in Environmental Science and Technology, 2003, 33(3): 237-273. doi: 10.1080/10643380390814479
[27] KISHIDA N, KIM J, TSUNEDA S, et al. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.[J]. Water Research, 2006, 40(12): 2303-2310. doi: 10.1016/j.watres.2006.04.037
[28] NOUHA K, KUMAR R S, BALASUBRAMANIAN S, et al. Critical review of EPS production, synthesis and composition for sludge flocculation[J]. Journal of Environmental Sciences, 2018, 66: 225-245. doi: 10.1016/j.jes.2017.05.020
[29] MENG F, LIU D, PAN Y, et al. Enhanced amount and quality of alginate-like exopolysaccharides in aerobic granular sludge for the treatment of salty wastewater[J]. BioResources, 2019, 14(1): 139-165.
[30] 王浩宇, 苏本生, 黄丹, 等. 好氧污泥颗粒化过程中Zeta电位与EPS的变化特性[J]. 环境科学, 2012, 33(5): 1614-1620.
[31] LI J, MA L, WEI S, et al. Aerobic granules dwelling vorticella and rotifers in an SBR fed with domestic wastewater[J]. Separation and Purification Technology, 2013, 110: 127-131. doi: 10.1016/j.seppur.2013.03.022
[32] FRANCA R, PINHEIRO H M, VAN LOOSDRECHT M, et al. Stability of aerobic granules during long-term bioreactor operation[J]. Biotechnology Advances, 2018, 36(1): 228-246. doi: 10.1016/j.biotechadv.2017.11.005
[33] TANG C J, ZHENG P, WANG C H, et al. Performance of high-loaded anammox UASB reactors containing granular sludge[J]. Water Research, 2011, 45(1): 135-144. doi: 10.1016/j.watres.2010.08.018
[34] HE Q, ZHANG W, ZHANG S, et al. Enhanced nitrogen removal in an aerobic granular sequencing batch reactor performing simultaneous nitrification, endogenous denitrification and phosphorus removal with low superficial gas velocity[J]. Chemical Engineering Journal, 2017, 326: 1223-1231. doi: 10.1016/j.cej.2017.06.071
[35] HE Q, CHEN L, ZHANG S, et al. Simultaneous nitrification, denitrification and phosphorus removal in aerobic granular sequencing batch reactors with high aeration intensity: Impact of aeration time[J]. Bioresource Technology, 2018, 263: 214-222. doi: 10.1016/j.biortech.2018.05.007
[36] LIN Y, DE KREUK M, VAN LOOSDRECHT M C M, et al. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant[J]. Water Research, 2010, 44(11): 3355-3364. doi: 10.1016/j.watres.2010.03.019
[37] SAM S B, DULEKGURGEN E. Characterization of exopolysaccharides from floccular and aerobic granular activated sludge as alginate-like-exoPS[J]. Desalination and Water Treatment, 2016, 57(6): 2534-2545. doi: 10.1080/19443994.2015.1052567
[38] LI J, HAO X D, GAN W, et al. Recovery of extracellular biopolymers from conventional activated sludge: Potential, characteristics and limitation[J]. Water Research, 2021, 205.
[39] LI J, HAO X D, GAN W, et al. Controlling factors and involved mechanisms on forming alginate like extracellular polymers in flocculent sludge[J]. Chemical Engineering Journal, 2022, 439.
[40] MORENO-ANDRADE I, VALDEZ-VAZQUEZ I, LÓPEZ-RODRÍGUEZ A. Effect of transient pH variation on microbial activity and physical characteristics of aerobic granules treating 4-chlorophenol[J]. Journal of Environmental Science and Health, Part A, 2020, 55(7): 878-885. doi: 10.1080/10934529.2020.1751505
[41] JACHIMOWICZ P, CYDZIK-KWIATKOWSKA A, SZKLARZ P. Effect of aeration mode on microbial structure and efficiency of treatment of TSS-rich wastewater from meat processing[J]. Applied Sciences, 2020, 10(21): 7414. doi: 10.3390/app10217414
[42] WAN C, SHEN Y, CHEN S, et al. Microstructural strength deterioration of aerobic granule sludge under organic loading swap[J]. Bioresource Technology, 2016, 221: 671-676. doi: 10.1016/j.biortech.2016.09.056
[43] 江肖良. 双层填料SBBR深度处理二级出水净化机制研究[D]. 武汉: 武汉理工大学, 2020.
[44] 车鉴, 徐牧, 阳桂菊, 等. 硅藻土固定化颗粒污泥对海水养殖废水除氨性能[J]. 环境工程学报, 2014, 8(12): 5318-5322.
[45] 郝晓地, 甘微, 李季, 等. 污泥EPS高值、高效提取与回收技术发展趋势[J]. 环境科学学报, 2021, 41(6): 2063-2078.