[1] YAN Q Y, LIAN C, HUANG K, et al. Constructing an acidic microenvironment by MoS2 in heterogeneous Fenton reaction for pollutant control[J]. Angewandte Chemie (International Ed), 2021, 60(31): 17155-17163. doi: 10.1002/anie.202105736
[2] GAO P, REDDY M A, MU X K, et al. VOCl as a cathode for rechargeable chloride ion batteries[J]. Angewandte Chemie (International Ed), 2016, 55(13): 4285-4290. doi: 10.1002/anie.201509564
[3] JI X X, WANG H F, HU P J. First principles study of Fenton reaction catalyzed by FeOCl: Reaction mechanism and location of active site[J]. Rare Metals, 2019, 38(8): 783-792. doi: 10.1007/s12598-018-1140-9
[4] JARRIGE I, CAI Y Q, SHIEH S R, et al. Charge transfer in FeOCl intercalation compounds and its pressure dependence: An X-ray spectroscopic study[J]. Physical Review B, 2010, 82(16): 165121. doi: 10.1103/PhysRevB.82.165121
[5] 王金岭, 温玉真, 汪华林, 等. FeOCl层状材料及其插层化合物: 结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280. WANG J L, WEN Y Z, WANG H L, et al. FeOCl layered materials and intercalated compounds: Structure, properties and applications[J]. Advances in Chemistry, 2021, 33(2): 263-280 (in Chinese).
[6] ZHAO X Y, ZHANG Z H. FeOCl in advanced oxidization processes for water purification: A critical review[J]. Current Pollution Reports, 2023, 9(2): 143-164. doi: 10.1007/s40726-023-00256-9
[7] CAO Y, CUI K P, CHEN Y H, et al. Efficient degradation of tetracycline by H2O2 catalyzed by FeOCl: A wide range of pH values from 3 to 7[J]. Solid State Sciences, 2021, 113: 106548. doi: 10.1016/j.solidstatesciences.2021.106548
[8] 马金环, 魏智强, 赵继威, 等. FeOCl光芬顿催化剂的表征及其降解罗丹明B的效果[J]. 材料科学与工艺, 2023, 31(6): 9-18. MA J H, WEI Z Q, ZHAO J W, et al. Characterization of FeOCl photo-Fenton catalyst and its degradation effect on Rhodamine B[J]. Materials Science and Technology, 2023, 31(6): 9-18 (in Chinese).
[9] 张少朋, 陈瑀, 白淑琴, 等. 氯氧铁非均相催化过氧化氢降解罗丹明B[J]. 环境科学, 2019, 40(11): 5009-5014. ZHANG S P, CHEN Y, BAI S Q, et al. Catalytic degradation of rhodamine B by FeOCl activated hydrogen peroxide[J]. Environmental Science, 2019, 40(11): 5009-5014 (in Chinese).
[10] 王晴. 制革复鞣废水中聚合物-Cr的络合及去除行为研究[D]. 西安: 陕西科技大学, 2020. WANG Q. Study on complexation and removal behavior of polymer-Cr in tanning wastewater[D]. Xi’an: Shaanxi University of Science & Technology, 2020 (in Chinese).
[11] 高明明, 柴晓苇, 曾运航, 等. 制革废水中的氯离子含量及来源分析[J]. 皮革科学与工程, 2013, 23(5): 46-50. GAO M M, CHAI X W, ZENG Y H, et al. Chloride ion content in wastewaters of leather making processes and analysis of its origin[J]. Leather Science and Engineering, 2013, 23(5): 46-50 (in Chinese).
[12] 孙柏阳, 马宏瑞, 朱超, 等. 铬屑碱解过程中铬与胶原分子量分布特征[J]. 环境化学, 2022, 41(10): 3447-3456. doi: 10.7524/j.issn.0254-6108.2022051802 SUN B Y, MA H R, ZHU C, et al. Dechromation and molecular weight distribution of hydrolyzed collagen from chromium-containing leather during alkaline[J]. Environmental Chemistry, 2022, 41(10): 3447-3456 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022051802
[13] 冯岱. 黄牛鞋面革浸水工艺控制要点[J]. 中国皮革, 2020, 49(1): 58-59. FENG D. Key points of soaking process for cattle upper leather[J]. China Leather, 2020, 49(1): 58-59 (in Chinese).
[14] 顾家熙, 马宏瑞, 李晓洁, 等. 制革生化尾水Fenton法处理对铬存在形态的影响[J]. 中国皮革, 2019, 48(1): 53-58. GU J X, MA H R, LI X J, et al. Effect of Fenton method on existence of chromium in tannery secondary effluent[J]. China Leather, 2019, 48(1): 53-58 (in Chinese).
[15] 杨应秋, 魏杰. 没食子酸加速卡马西平在Fe(Ⅲ)/PDS中的降解[J]. 工业水处理, 2021, 41(12): 95-101. YANG Y Q, WEI J. Degradation of carbamazepine in Fe(Ⅲ)/PDS system under Gallic acid acceleration[J]. Industrial Water Treatment, 2021, 41(12): 95-101 (in Chinese).
[16] 侯晓静. 异相Fenton体系铁循环调控及其污染物降解性能增强[D]. 武汉: 华中师范大学, 2018. HOU X J. Regulation of iron cycle in heterogeneous Fenton system and enhancement of pollutant degradation performance[D]. Wuhan: Central China Normal University, 2018 (in Chinese).
[17] 黄腾腾. FeOCl光催化材料的制备改性及其处理RhB废水的研究[D]. 西安: 长安大学, 2021. HUANG T T. Preparation and modification of FeOCl photocatalytic material and its treatment of RhB wastewater[D]. Xi’an: Changan University, 2021 (in Chinese).
[18] 曹勇. FeOCl及其改性材料非均相催化降解盐酸四环素和诺氟沙星的研究[D]. 合肥: 合肥工业大学, 2021. CAO Y. Heterogeneous catalytic degradation of tetracycline hydrochloride and norfloxacin by FeOCl and its modified materials[D]. Hefei: Hefei University of Technology, 2021 (in Chinese).
[19] ZHU G P, YU X D, XIE F, et al. Ultraviolet light assisted heterogeneous Fenton degradation of tetracycline based on polyhedral Fe3O4 nanoparticles with exposed high-energy{110}facets[J]. Applied Surface Science, 2019, 485: 496-505. doi: 10.1016/j.apsusc.2019.04.239
[20] HOU L W, WANG L G, ROYER S, et al. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst[J]. Journal of Hazardous Materials, 2016, 302: 458-467. doi: 10.1016/j.jhazmat.2015.09.033
[21] CHEN M D, XU H M, WANG Q, et al. Activation mechanism of sodium percarbonate by FeOCl under visible-light-enhanced catalytic oxidation[J]. Chemical Physics Letters, 2018, 706: 415-420. doi: 10.1016/j.cplett.2018.06.004
[22] NEYENS E, BAEYENS J. A review of classic Fenton’s peroxidation as an advanced oxidation technique[J]. Journal of Hazardous Materials, 2003, 98(1/2/3): 33-50.
[23] SUN M, CHU C H, GENG F L, et al. Reinventing Fenton chemistry: Iron oxychloride nanosheet for pH-insensitive H2O2 activation[J]. Environmental Science & Technology Letters, 2018, 5(3): 186-191.
[24] YANG X J, XU X M, XU J, et al. Iron oxychloride (FeOCl): An efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants[J]. Journal of the American Chemical Society, 2013, 135(43): 16058-16061. doi: 10.1021/ja409130c
[25] PLIEGO G, ZAZO J A, GARCIA-MUÑOZ P, et al. Trends in the intensification of the Fenton process for wastewater treatment: An overview[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(24): 2611-2692. doi: 10.1080/10643389.2015.1025646
[26] 张亚珍. 过氧化氢的漂白及其稳定性探讨[J]. 天津纺织工学院学报, 1988, 7(1): 105-109. ZHANG Y Z. Hydrogen peroxide bleaching and its stability[J]. Journal of Tiangong University, 1988, 7(1): 105-109 (in Chinese).
[27] NAVALON S, ALVARO M, GARCIA H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 1-26.