[1] |
YAN Q Y, LIAN C, HUANG K, et al. Constructing an acidic microenvironment by MoS2 in heterogeneous Fenton reaction for pollutant control[J]. Angewandte Chemie (International Ed), 2021, 60(31): 17155-17163. doi: 10.1002/anie.202105736
|
[2] |
GAO P, REDDY M A, MU X K, et al. VOCl as a cathode for rechargeable chloride ion batteries[J]. Angewandte Chemie (International Ed), 2016, 55(13): 4285-4290. doi: 10.1002/anie.201509564
|
[3] |
JI X X, WANG H F, HU P J. First principles study of Fenton reaction catalyzed by FeOCl: Reaction mechanism and location of active site[J]. Rare Metals, 2019, 38(8): 783-792. doi: 10.1007/s12598-018-1140-9
|
[4] |
JARRIGE I, CAI Y Q, SHIEH S R, et al. Charge transfer in FeOCl intercalation compounds and its pressure dependence: An X-ray spectroscopic study[J]. Physical Review B, 2010, 82(16): 165121. doi: 10.1103/PhysRevB.82.165121
|
[5] |
王金岭, 温玉真, 汪华林, 等. FeOCl层状材料及其插层化合物: 结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280.
WANG J L, WEN Y Z, WANG H L, et al. FeOCl layered materials and intercalated compounds: Structure, properties and applications[J]. Advances in Chemistry, 2021, 33(2): 263-280 (in Chinese).
|
[6] |
ZHAO X Y, ZHANG Z H. FeOCl in advanced oxidization processes for water purification: A critical review[J]. Current Pollution Reports, 2023, 9(2): 143-164. doi: 10.1007/s40726-023-00256-9
|
[7] |
CAO Y, CUI K P, CHEN Y H, et al. Efficient degradation of tetracycline by H2O2 catalyzed by FeOCl: A wide range of pH values from 3 to 7[J]. Solid State Sciences, 2021, 113: 106548. doi: 10.1016/j.solidstatesciences.2021.106548
|
[8] |
马金环, 魏智强, 赵继威, 等. FeOCl光芬顿催化剂的表征及其降解罗丹明B的效果[J]. 材料科学与工艺, 2023, 31(6): 9-18.
MA J H, WEI Z Q, ZHAO J W, et al. Characterization of FeOCl photo-Fenton catalyst and its degradation effect on Rhodamine B[J]. Materials Science and Technology, 2023, 31(6): 9-18 (in Chinese).
|
[9] |
张少朋, 陈瑀, 白淑琴, 等. 氯氧铁非均相催化过氧化氢降解罗丹明B[J]. 环境科学, 2019, 40(11): 5009-5014.
ZHANG S P, CHEN Y, BAI S Q, et al. Catalytic degradation of rhodamine B by FeOCl activated hydrogen peroxide[J]. Environmental Science, 2019, 40(11): 5009-5014 (in Chinese).
|
[10] |
王晴. 制革复鞣废水中聚合物-Cr的络合及去除行为研究[D]. 西安: 陕西科技大学, 2020.
WANG Q. Study on complexation and removal behavior of polymer-Cr in tanning wastewater[D]. Xi’an: Shaanxi University of Science & Technology, 2020 (in Chinese).
|
[11] |
高明明, 柴晓苇, 曾运航, 等. 制革废水中的氯离子含量及来源分析[J]. 皮革科学与工程, 2013, 23(5): 46-50.
GAO M M, CHAI X W, ZENG Y H, et al. Chloride ion content in wastewaters of leather making processes and analysis of its origin[J]. Leather Science and Engineering, 2013, 23(5): 46-50 (in Chinese).
|
[12] |
孙柏阳, 马宏瑞, 朱超, 等. 铬屑碱解过程中铬与胶原分子量分布特征[J]. 环境化学, 2022, 41(10): 3447-3456. doi: 10.7524/j.issn.0254-6108.2022051802
SUN B Y, MA H R, ZHU C, et al. Dechromation and molecular weight distribution of hydrolyzed collagen from chromium-containing leather during alkaline[J]. Environmental Chemistry, 2022, 41(10): 3447-3456 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022051802
|
[13] |
冯岱. 黄牛鞋面革浸水工艺控制要点[J]. 中国皮革, 2020, 49(1): 58-59.
FENG D. Key points of soaking process for cattle upper leather[J]. China Leather, 2020, 49(1): 58-59 (in Chinese).
|
[14] |
顾家熙, 马宏瑞, 李晓洁, 等. 制革生化尾水Fenton法处理对铬存在形态的影响[J]. 中国皮革, 2019, 48(1): 53-58.
GU J X, MA H R, LI X J, et al. Effect of Fenton method on existence of chromium in tannery secondary effluent[J]. China Leather, 2019, 48(1): 53-58 (in Chinese).
|
[15] |
杨应秋, 魏杰. 没食子酸加速卡马西平在Fe(Ⅲ)/PDS中的降解[J]. 工业水处理, 2021, 41(12): 95-101.
YANG Y Q, WEI J. Degradation of carbamazepine in Fe(Ⅲ)/PDS system under Gallic acid acceleration[J]. Industrial Water Treatment, 2021, 41(12): 95-101 (in Chinese).
|
[16] |
侯晓静. 异相Fenton体系铁循环调控及其污染物降解性能增强[D]. 武汉: 华中师范大学, 2018.
HOU X J. Regulation of iron cycle in heterogeneous Fenton system and enhancement of pollutant degradation performance[D]. Wuhan: Central China Normal University, 2018 (in Chinese).
|
[17] |
黄腾腾. FeOCl光催化材料的制备改性及其处理RhB废水的研究[D]. 西安: 长安大学, 2021.
HUANG T T. Preparation and modification of FeOCl photocatalytic material and its treatment of RhB wastewater[D]. Xi’an: Changan University, 2021 (in Chinese).
|
[18] |
曹勇. FeOCl及其改性材料非均相催化降解盐酸四环素和诺氟沙星的研究[D]. 合肥: 合肥工业大学, 2021.
CAO Y. Heterogeneous catalytic degradation of tetracycline hydrochloride and norfloxacin by FeOCl and its modified materials[D]. Hefei: Hefei University of Technology, 2021 (in Chinese).
|
[19] |
ZHU G P, YU X D, XIE F, et al. Ultraviolet light assisted heterogeneous Fenton degradation of tetracycline based on polyhedral Fe3O4 nanoparticles with exposed high-energy{110}facets[J]. Applied Surface Science, 2019, 485: 496-505. doi: 10.1016/j.apsusc.2019.04.239
|
[20] |
HOU L W, WANG L G, ROYER S, et al. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst[J]. Journal of Hazardous Materials, 2016, 302: 458-467. doi: 10.1016/j.jhazmat.2015.09.033
|
[21] |
CHEN M D, XU H M, WANG Q, et al. Activation mechanism of sodium percarbonate by FeOCl under visible-light-enhanced catalytic oxidation[J]. Chemical Physics Letters, 2018, 706: 415-420. doi: 10.1016/j.cplett.2018.06.004
|
[22] |
NEYENS E, BAEYENS J. A review of classic Fenton’s peroxidation as an advanced oxidation technique[J]. Journal of Hazardous Materials, 2003, 98(1/2/3): 33-50.
|
[23] |
SUN M, CHU C H, GENG F L, et al. Reinventing Fenton chemistry: Iron oxychloride nanosheet for pH-insensitive H2O2 activation[J]. Environmental Science & Technology Letters, 2018, 5(3): 186-191.
|
[24] |
YANG X J, XU X M, XU J, et al. Iron oxychloride (FeOCl): An efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants[J]. Journal of the American Chemical Society, 2013, 135(43): 16058-16061. doi: 10.1021/ja409130c
|
[25] |
PLIEGO G, ZAZO J A, GARCIA-MUÑOZ P, et al. Trends in the intensification of the Fenton process for wastewater treatment: An overview[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(24): 2611-2692. doi: 10.1080/10643389.2015.1025646
|
[26] |
张亚珍. 过氧化氢的漂白及其稳定性探讨[J]. 天津纺织工学院学报, 1988, 7(1): 105-109.
ZHANG Y Z. Hydrogen peroxide bleaching and its stability[J]. Journal of Tiangong University, 1988, 7(1): 105-109 (in Chinese).
|
[27] |
NAVALON S, ALVARO M, GARCIA H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 1-26.
|