[1] 王赫彬. 长白山区生态系统服务变化及权衡与协同关系研究 [D]. 北京: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2022. WANG H B. Changes, Trade-offs, and Synergies of Ecosystem Services in Changbai Mountain Regions [D]. Beijing: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2022 (in Chinese).
[2] 冯明铭. 长白山北坡典型植被类型水源涵养机制 [D]. 兰州: 西北师范大学, 2021. FENG M M. Water conservation mechanism of typical vegetation types in north slope of Changbai Mountain [D]. Lanzhou: Northwest Normal University, 2021 (in Chinese).
[3] HUANG X D, DENG J, MA X F, et al. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China[J]. The Cryosphere, 2016, 10(5): 2453-2463. doi: 10.5194/tc-10-2453-2016
[4] 郭慧. 中国东北地区积雪物候及其对气候的响应 [D]. 兰州: 兰州大学, 2021. GUO H. Snow phenology and its response to climate in northeastern China [D]. Lanzhou: Lanzhou University, 2021 (in Chinese).
[5] 张兵, 宋献方, 张应华, 等. 三江平原地表水与地下水氢氧同位素和水化学特征[J]. 水文, 2014, 34(2): 38-43. doi: 10.3969/j.issn.1000-0852.2014.02.008 ZHANG B, SONG X F, ZHANG Y H, et al. Hydrogen and oxygen isotopic and hydrochemical characteristics of water in Sanjiang Plain[J]. Journal of China Hydrology, 2014, 34(2): 38-43 (in Chinese). doi: 10.3969/j.issn.1000-0852.2014.02.008
[6] GUZMÁN P, ANIBAS C, BATELAAN O, et al. Hydrological connectivity of alluvial Andean valleys: A groundwater/surface-water interaction case study in Ecuador[J]. Hydrogeology Journal, 2016, 24(4): 955-969. doi: 10.1007/s10040-015-1361-z
[7] 朱金峰, 刘悦忆, 章树安, 等. 地表水与地下水相互作用研究进展[J]. 中国环境科学, 2017, 37(8): 3002-3010. ZHU J F, LIU Y Y, ZHANG S A, et al. Review on the research of surface water and groundwater interactions[J]. China Environmental Science, 2017, 37(8): 3002-3010 (in Chinese).
[8] 刘芳, 曹广超, 曹生奎, 等. 祁连山南坡水体氢氧稳定同位素特征研究[J]. 干旱区研究, 2020, 37(5): 1116-1123. LIU F, CAO G C, CAO S K, et al. Hydrogen and oxygen isotope characteristics of water bodies on the southern slope of the Qilian Mountains[J]. Arid Zone Research, 2020, 37(5): 1116-1123 (in Chinese).
[9] 张兵, 宋献方, 张应华, 等. 第二松花江流域地表水与地下水相互关系[J]. 水科学进展, 2014, 25(3): 336-347. ZHANG B, SONG X F, ZHANG Y H, et al. Relationship between surface water and groundwater in the second Songhua River basin[J]. Advances in Water Science, 2014, 25(3): 336-347 (in Chinese).
[10] 贾思达. 三江平原松花江—挠力河流域地下水与地表水转化关系研究 [D]. 长春: 吉林大学, 2019. JIA S D. Groudwater-surface water interaction in Songhuajiang-naoli river basin of Sanjiang Plain [D]. Changchun: Jilin University, 2019 (in Chinese).
[11] 吴亚敏. 三江平原松花江-挠力河流域融雪入渗对地下水的补给作用研究 [D]. 长春: 吉林大学, 2023. WU Y M. Study on groundwater recharge from snowmelt infiltrationin Songhua River-Naoli River Basin of Sanjiang Plain [D]. Changchun: Jilin University, 2023 (in Chinese).
[12] 董毅. 长白山玄武岩区天然矿泉水与地表水关系研究 [D]. 长春: 吉林大学, 2020. DONG Y. Research on the relationship between natural mineral water and surface water in the basalt area of Changbai Mountain [D]. Changchun: Jilin University, 2020 (in Chinese).
[13] 危润初. 靖宇国家级自然保护区天然矿泉水形成机理研究 [D]. 长春: 吉林大学, 2014. WEI R C. Study on the formation mechanism of natural mineral water in Jingyu national nature reserve [D]. Changchun: Jilin University, 2014 (in Chinese).
[14] 高月. 抚松县矿泉水补给条件与形成机理研究 [D]. 长春: 吉林大学, 2016. GAO Y. Research on the recharge conditions and formation mechanism of mineral water in Fusong County [D]. Changchun: Jilin University, 2016 (in Chinese).
[15] 张文卿, 王文凤, 刘淑芹, 等. 长白山矿泉水补给径流与排泄关系[J]. 河海大学学报(自然科学版), 2019, 47(2): 108-113. ZHANG W Q, WANG W F, LIU S Q, et al. Relationship of recharge runoff and drainage for the mineral water in the Changbai Mountain[J]. Journal of Hohai University (Natural Sciences), 2019, 47(2): 108-113 (in Chinese).
[16] 江巧宁, 陈建生. 深循环地下水补给长白山天池的水量平衡分析[J]. 水资源保护, 2015, 31(5): 7-13. JIANG Q N, CHEN J S. Analysis on water balance of deep cycle groundwater supplying Tianchi Lake of Changbai Mountain[J]. Water Resources Protection, 2015, 31(5): 7-13 (in Chinese).
[17] 陈刚, 王文凤, 马芬艳, 等. 大兴安岭外源水补给的水量平衡与同位素证据[J]. 水资源保护, 2021, 37(4): 75-81. doi: 10.3880/j.issn.1004-6933.2021.04.011 CHEN G, WANG W F, MA F Y, et al. Water balance and isotopic evidence of external water supply in Daxing’an Mountains[J]. Water Resources Protection, 2021, 37(4): 75-81 (in Chinese). doi: 10.3880/j.issn.1004-6933.2021.04.011
[18] 姚怡杰, 王章玮, 张逸, 等. 长白山积雪的离子组成及在融雪过程中的变化[J]. 环境科学学报, 2023, 43(10): 289-297. YAO Y J, WANG Z W, ZHANG Y, et al. Ion composition of snow and its variation during snowmelt at Changbai Mountain[J]. Acta Scientiae Circumstantiae, 2023, 43(10): 289-297 (in Chinese).
[19] WU J K, WU X P, HOU D J, et al. Streamwater hydrograph separation in an alpine glacier area in the Qilian Mountains, northWestern China[J]. Hydrological Sciences Journal, 2016, 61(13): 2399-2410. doi: 10.1080/02626667.2015.1112393
[20] 孔彦龙, 庞忠和. 高寒流域同位素径流分割研究进展[J]. 冰川冻土, 2010, 32(3): 619-625. KONG Y L, PANG Z H. Isotope hydrograph separation in alpine catchments: A review[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 619-625 (in Chinese).
[21] GENEREUX D. Quantifying uncertainty in tracer-based hydrograph separations[J]. Water Resources Research, 1998, 34(4): 915-919. doi: 10.1029/98WR00010
[22] UHLENBROOK S, HOEG S. Quantifying uncertainties in tracer-based hydrograph separations: A case study for two-, three- and five-component hydrograph separations in a mountainous catchment[J]. Hydrological Processes, 2003, 17(2): 431-453. doi: 10.1002/hyp.1134
[23] LI Z J, LI Z X, FAN X J, et al. The sources of supra-permafrost water and its hydrological effect based on stable isotopes in the third pole region[J]. Science of the Total Environment, 2020, 715: 136911. doi: 10.1016/j.scitotenv.2020.136911
[24] 林元武, 高清武, 于清桐. 长白山天池火山区长白聚龙泉热水氢氧稳定同位素组成与氚分布规律 [J]. 地质论评, 1999, 45(增刊1): 236-240. LIN Y W, GAO Q W, YU Q T. Hydrogen and oxygen stable isotopic compositions and distribution of tritium contents in hot water of the Changbaijulongquan spring in the Tianchi volcanic region, Changbai Mountains [J]. Geological Review, 1999, 45(Sup 1): 236-240 (in Chinese).
[25] 李玥, 吴珍汉, 杨智. 长白山天池水系常量离子和氢氧同位素地球化学示踪[J]. 科学技术与工程, 2015, 15(6): 16-20. LI Y, WU Z H, YANG Z. Geochemical tracer of major ions, hydrogen and oxygen isotopes for waters of Tianchi Lake in Changbai Mountain[J]. Science Technology and Engineering, 2015, 15(6): 16-20 (in Chinese).
[26] 宋献方, 刘相超, 夏军, 等. 基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究[J]. 中国科学(D辑: 地球科学), 2007, 37(1): 102-110. SONG X F, LIU X C, XIA J, et al. Study on the transformation relationship between surface water and groundwater in Huasha River Basin based on environmental isotope technology[J]. Science in China (Series D: Earth Sciences), 2007, 37(1): 102-110 (in Chinese).
[27] 叶浠倩, 邬国栋, 杨洋, 等. 西藏日喀则区域地热温泉水氢氧稳定同位素特征[J]. 环境化学, 2022, 41(9): 2880-2895. doi: 10.7524/j.issn.0254-6108.2022033101 YE X Q, WU G D, YANG Y, et al. Hydrogen and oxygen stable isotopic characteristics of geothermal hot spring water in Shigatse region, Tibet[J]. Environmental Chemistry, 2022, 41(9): 2880-2895 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022033101
[28] CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702
[29] 汪少勇, 何晓波, 丁永建, 等. 长江源多年冻土区地下水氢氧稳定同位素特征及其影响因素[J]. 环境科学, 2020, 41(1): 166-172. WANG S Y, HE X B, DING Y J, et al. Characteristics and influencing factors of stable hydrogen and oxygen isotopes in groundwater in the permafrost region of the source region of the Yangtze River[J]. Environmental Science, 2020, 41(1): 166-172 (in Chinese).
[30] 马浩天, 甄志磊, 武小钢. 汾河源头水源稳定同位素特征及水源解析[J]. 环境化学, 2021, 40(11): 3432-3442. doi: 10.7524/j.issn.0254-6108.2021022102 MA H T, ZHEN Z L, WU X G. Stable isotope characteristics of the headstream region of Fenhe River and water resource analysis[J]. Environmental Chemistry, 2021, 40(11): 3432-3442 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021022102
[31] 宋献方, 刘鑫, 夏军, 等. 基于氢氧同位素的岔巴沟流域地表水—地下水转化关系研究[J]. 应用基础与工程科学学报, 2009, 17(1): 8-20. doi: 10.3969/j.issn.1005-0930.2009.01.002 SONG X F, LIU X, XIA J, et al. Interactions between surface water and groundwater in chabagou catchment using hydrogen and oxygen isotopes[J]. Journal of Basic Science and Engineering, 2009, 17(1): 8-20 (in Chinese). doi: 10.3969/j.issn.1005-0930.2009.01.002
[32] 李小飞, 张明军, 马潜, 等. 我国东北地区大气降水稳定同位素特征及其水汽来源[J]. 环境科学, 2012, 33(9): 2924-2931. LI X F, ZHANG M J, MA Q, et al. Characteristics of stable isotopes in precipitation over Northeast China and its water vapor sources[J]. Environmental Science, 2012, 33(9): 2924-2931 (in Chinese).
[33] 张荷惠子, 于坤霞, 李占斌, 等. 黄土丘陵沟壑区小流域不同水体氢氧同位素特征[J]. 环境科学, 2019, 40(7): 3030-3038. ZHANG H, YU K X, LI Z B, et al. Characteristics of hydrogen and oxygen isotopes in different water bodies in hilly and Gully Regions of the Loess Plateau[J]. Environmental Science, 2019, 40(7): 3030-3038 (in Chinese).
[34] XU Y Y, YAN B X, LUAN Z Q, et al. Application of stable isotope tracing technologies in identification of transformation among waters in Sanjiang Plain, Northeast China[J]. Chinese Geographical Science, 2013, 23(4): 435-444. doi: 10.1007/s11769-012-0578-1
[35] 杜晨, 张丽娟, 杨艺萍, 等. 哈尔滨大气降水氢氧稳定同位素特征及水汽来源[J]. 环境科学学报, 2022, 42(7): 94-105. DU C, ZHANG L J, YANG Y P, et al. Stable isotopic compositions of precipitation and water vapor origins in Harbin[J]. Acta Scientiae Circumstantiae, 2022, 42(7): 94-105 (in Chinese).
[36] 李广, 章新平, 宋松, 等. 中国不同水体中δD与δ18O研究进展[J]. 气象与环境学报, 2016, 32(4): 132-138. LI G, ZHANG X P, SONG S, et al. Research progress of δD and δ18O in different water bodies in China[J]. Journal of Meteorology and Environment, 2016, 32(4): 132-138 (in Chinese).
[37] WANG S Y, HE X B, KANG S C, et al. Estimation of stream water components and residence time in a permafrost catchment in the central Tibetan Plateau using long-term water stable isotopic data[J]. The Cryosphere, 2022, 16(12): 5023-5040. doi: 10.5194/tc-16-5023-2022
[38] LI D Y, WRZESIEN M L, DURAND M, et al. How much runoff originates as snow in the western United States, and how will that change in the future?[J]. Geophysical Research Letters, 2017, 44(12): 6163-6172. doi: 10.1002/2017GL073551
[39] PU T, QIN D H, KANG S C, et al. Water isotopes and hydrograph separation in different glacial catchments in the southeast margin of the Tibetan Plateau[J]. Hydrological Processes, 2017, 31(22): 3810-3826. doi: 10.1002/hyp.11293
[40] SAYDI M, DING J L. Impacts of topographic factors on regional snow cover characteristics[J]. Water Science and Engineering, 2020, 13(3): 171-180. doi: 10.1016/j.wse.2020.09.002
[41] CHEN H Y, CHEN Y N, LI W H, et al. Quantifying the contributions of snow/glacier meltwater to river runoff in the Tianshan Mountains, Central Asia[J]. Global and Planetary Change, 2019, 174: 47-57. doi: 10.1016/j.gloplacha.2019.01.002
[42] 陈希. 基于环境示踪剂的那曲高寒区雨季径流水源及路径解析 [D]. 大连: 大连理工大学, 2021. CHEN X. Analysis of water sources and confluence pathways based on environmental tracers in rainy season in alpine regions of Naqu River Basin [D]. Dalian: Dalian University of Technology, 2021 (in Chinese).
[43] LI Z X, FENG Q, LIU W, et al. The stable isotope evolution in Shiyi glacier system during the ablation period in the north of Tibetan Plateau, China[J]. Quaternary International, 2015, 380: 262-271.