[1] |
杨珊. 固体废弃物的污染现状与治理措施应用分析[J]. 中国资源综合利用, 2018, 36(6): 99-101. doi: 10.3969/j.issn.1008-9500.2018.06.034
|
[2] |
RAHMAN Z, SINGH V P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview[J]. Environmental Monitoring and Assessment, 2019, 191(7): 419. doi: 10.1007/s10661-019-7528-7
|
[3] |
WANG S, LIU B, ZHANG Q, et al. Application of geopolymers for treatment of industrial solid waste containing heavy metals: State-of-the-art review[J]. Journal of Cleaner Production, 2023, 390: 136053. doi: 10.1016/j.jclepro.2023.136053
|
[4] |
陈印军, 方琳娜, 杨俊彦. 我国农田土壤污染状况及防治对策[J]. 中国农业资源与区划, 2014, 35(4): 1-5+19. doi: 10.7621/cjarrp.1005-9121.20140401
|
[5] |
黎红娟, 刘宇. 铅锌冶炼场地重金属污染土壤修复技术研究进展[J]. 绿色矿冶, 2023, 39(6): 81-85.
|
[6] |
DOMINGUEZ-BENETTON X, VARIA J C, POZO G, et al. Metal recovery by microbial electro-metallurgy[J]. Progress in Materials Science, 2018, 94: 435-461. doi: 10.1016/j.pmatsci.2018.01.007
|
[7] |
骆永明, 滕应. 中国土壤污染与修复科技研究进展和展望[J]. 土壤学报, 2020, 57(5): 1137-1142.
|
[8] |
朱雅琪, 巫静, 余震, 等. 我国农田土壤重金属污染现状及治理研究进展[J]. 现代农业科技, 2024(5): 115-118+125. doi: 10.3969/j.issn.1007-5739.2024.05.029
|
[9] |
RILEY C M. Relation of chemical properties to the bloating of clays[J]. Journal of the American Ceramic Society, 1951, 34: 121-128. doi: 10.1111/j.1151-2916.1951.tb11619.x
|
[10] |
BELHAJ D, JERBI B, MEDHIOUB M, et al. Impact of treated urban wastewater for reuse in agriculture on crop response and soil ecotoxicity[J]. Environmental Science and Pollution Research, 2016, 23(16): 15877-15887. doi: 10.1007/s11356-015-5672-3
|
[11] |
YANG J, LEI M, CHEN T, et al. Current status and developing trends of the contents of heavy metals in sewage sludges in China[J]. Frontiers of Environmental Science & Engineering, 2014, 8(5): 719-728.
|
[12] |
ZABANIOTOU A, THEOFILOU C. Green energy at cement kiln in Cyprus—Use of sewage sludge as a conventional fuel substitute[J]. Renewable and Sustainable Energy Reviews, 2008, 12(2): 531-541. doi: 10.1016/j.rser.2006.07.017
|
[13] |
MAKNI H, KHLIF M, BECQUART F, et al. Leaching test for assessing compliance with environmental requirements of fired clay bricks incorporated by deinking paper sludge[J]. Construction and Building Materials, 2021, 289: 123155. doi: 10.1016/j.conbuildmat.2021.123155
|
[14] |
GOEL G, KALAMDHAD A S. An investigation on use of paper mill sludge in brick manufacturing[J]. Construction and Building Materials, 2017, 148: 334-343. doi: 10.1016/j.conbuildmat.2017.05.087
|
[15] |
YARAS A. Combined effects of paper mill sludge and carbonation sludge on characteristics of fired clay bricks[J]. Construction and Building Materials, 2020, 249: 118722. doi: 10.1016/j.conbuildmat.2020.118722
|
[16] |
ZHANG M, CHEN C, MAO L, et al. Use of electroplating sludge in production of fired clay bricks: Characterization and environmental risk evaluation[J]. Construction and Building Materials, 2018, 159: 27-36. doi: 10.1016/j.conbuildmat.2017.10.130
|
[17] |
HASSAN K M, FUKUSHI K, TURIKUZZAMAN K, et al. Effects of using arsenic–iron sludge wastes in brick making[J]. Waste Management, 2014, 34(6): 1072-1078. doi: 10.1016/j.wasman.2013.09.022
|
[18] |
ULLAH S, HASAN M, AHMAD S I, et al. Performance of industrial sludge-amended bricks manufactured in conventional kilns[J]. Journal of Material Cycles and Waste Management, 2020, 22: 1932-1942. doi: 10.1007/s10163-020-01080-9
|
[19] |
WENG C H, LIN D F, CHIANG P C. Utilization of sludge as brick materials[J]. Advances in Environmental Research, 2003, 7(3): 679-685. doi: 10.1016/S1093-0191(02)00037-0
|
[20] |
张钧羿, 魏建兵, 韩冬, 等. 沈阳市政污泥制备烧结砖的试验探究[J]. 环境工程技术学报, 2023, 13(3): 1187-1193. doi: 10.12153/j.issn.1674-991X.20220469
|
[21] |
吴韵秋, 周欢, 王嘉, 等. 电镀污泥烧结砖的物理力学性能及浸出风险评估[J]. 电镀与涂饰, 2020, 39(13): 879-886.
|
[22] |
罗立群, 王召, 魏金明, 等. 铁尾矿-煤矸石-污泥复合烧结砖的制备与特性[J]. 中国矿业, 2018, 27(3): 127-131+137.
|
[23] |
马雯, 呼世斌. 以城市污泥为掺料制备烧结砖[J]. 环境工程学报, 2012, 6(3): 1035-1038.
|
[24] |
吴韵秋, 周欢, 毛林强, 等. 添加玻璃粉对掺混电镀污泥砖物理力学性能及浸出毒性的影响[J]. 环境化学, 2021, 40(6): 1911-1921. doi: 10.7524/j.issn.0254-6108.2020022402
|
[25] |
XU G R, ZOU J L, LI G B. Solidification and leaching behaviours of Cr6+ in sludge ceramsite[J]. Journal of Hazardous Materials, 2008, 153(3): 1031-1035. doi: 10.1016/j.jhazmat.2007.09.056
|
[26] |
PRASAD B, MONDAL K K. Heavy metals leaching in Indian fly ash[J]. Journal of Environmental Sciences, 2008, 50(2): 127-132.
|
[27] |
KOSEOGLU K, POLAT M, POLAT H. Encapsulating fly ash and acidic process waste water in brick structure[J]. Journal of Hazardous Materials, 2010, 176(1): 957-964.
|
[28] |
ÇIçEK T, ÇINçIN Y. Use of fly ash in production of light-weight building bricks[J]. Construction and Building Materials, 2015, 94: 521-527. doi: 10.1016/j.conbuildmat.2015.07.029
|
[29] |
GUPTA N, GEDAM V V, MOGHE C, et al. Investigation of characteristics and leaching behavior of coal fly ash, coal fly ash bricks and clay bricks[J]. Environmental Technology & Innovation, 2017, 7: 152-159.
|
[30] |
LEIVA C, ARENAS C, ALONSO-FARIñAS B, et al. Characteristics of fired bricks with co-combustion fly ashes[J]. Journal of Building Engineering, 2016, 5: 114-118. doi: 10.1016/j.jobe.2015.12.001
|
[31] |
LEIVA C, RODRIGUEZ-GALáN M, ARENAS C, et al. A mechanical, leaching and radiological assessment of fired bricks with a high content of fly ash[J]. Ceramics International, 2018, 44(11): 13313-13319. doi: 10.1016/j.ceramint.2018.04.162
|
[32] |
GUPTA N, GEDAM V V, MOGHE C, et al. Comparative assessment of batch and column leaching studies for heavy metals release from coal fly ash bricks and clay bricks[J]. Environmental Technology & Innovation, 2019, 16: 100461.
|
[33] |
LINGLING X, WEI G, TAO W, et al. Study on fired bricks with replacing clay by fly ash in high volume ratio[J]. Construction and Building Materials, 2005, 19(3): 243-247. doi: 10.1016/j.conbuildmat.2004.05.017
|
[34] |
SUTCU M, ERDOGMUS E, GENCEL O, et al. Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production[J]. Journal of Cleaner Production, 2019, 233: 753-764. doi: 10.1016/j.jclepro.2019.06.017
|
[35] |
FANG W, CHENG X, SUN C-J, et al. Optimization of the fabrication of sustainable ceramsite adsorbent from coal fly ash/waterworks sludge/waste glass for decolorization of malachite green[J]. Adsorption Science & Technology, 2023, 2023: 8581697.
|
[36] |
杨学子, 刘玉忠. 粉煤灰陶粒对水体中磷的吸附性能研究[J]. 环境生态学, 2022, 4(11): 103-107+114.
|
[37] |
屈湃, 王倩, 黎佳全, 等. 粉煤灰基免烧陶粒的表面沸石化及其对Cu2+吸附性能研究[J]. 现代技术陶瓷, 2022, 43(2): 118-128.
|
[38] |
QIN J, CUI C, CUI X, et al. Preparation and characterization of ceramsite from lime mud and coal fly ash[J]. Construction and Building Materials, 2015, 95: 10-17. doi: 10.1016/j.conbuildmat.2015.07.106
|
[39] |
CHEN G, WANG M, LIU Z, et al. The biogeophysical effects of revegetation around mining areas: A case study of Dongsheng mining areas in Inner Mongolia[J]. Sustainability, 2017, 9(4): 628. doi: 10.3390/su9040628
|
[40] |
KONG X, GUO Y, XUE S, et al. Natural evolution of alkaline characteristics in bauxite residue[J]. Journal of Cleaner Production, 2017, 143: 224-230. doi: 10.1016/j.jclepro.2016.12.125
|
[41] |
CHEN Y, ZHANG Y, CHEN T, et al. Preparation of eco-friendly construction bricks from hematite tailings[J]. Construction and Building Materials, 2011, 25(4): 2107-2111. doi: 10.1016/j.conbuildmat.2010.11.025
|
[42] |
LI C, WEN Q, HONG M, et al. Heavy metals leaching in bricks made from lead and zinc mine tailings with varied chemical components[J]. Construction and Building Materials, 2017, 134: 443-451. doi: 10.1016/j.conbuildmat.2016.12.076
|
[43] |
周伟伦, 廖正家, 陈涛, 等. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5): 1670-1678. doi: 10.12030/j.cjee.202012132
|
[44] |
LUO Z, GUO J, LIU X, et al. Preparation of ceramsite from lead-zinc tailings and coal gangue: Physical properties and solidification of heavy metals[J]. Construction and Building Materials, 2023, 368: 130426. doi: 10.1016/j.conbuildmat.2023.130426
|
[45] |
杜芳, 刘阳生. 铁尾矿烧制陶粒及其性能的研究[J]. 环境工程, 2010, 28(S1): 369-372+402.
|
[46] |
HE H, YUE Q, SU Y, et al. Preparation and mechanism of the sintered bricks produced from Yellow River silt and red mud[J]. Journal of Hazardous Materials, 2012, 203-204: 53-61. doi: 10.1016/j.jhazmat.2011.11.095
|
[47] |
SHAO Y, SHAO Y, ZHANG W, et al. Preparation of municipal solid waste incineration fly ash-based ceramsite and its mechanisms of heavy metal immobilization[J]. Waste Management, 2022, 143: 54-60. doi: 10.1016/j.wasman.2022.02.021
|
[48] |
崔长颢, 杨柳阳, 王雪娇, 等. 利用含重金属土壤制备烧结砖可行性及环境安全性研究[J]. 环境工程技术学报, 2023, 13(1): 312-317. doi: 10.12153/j.issn.1674-991X.20210613
|
[49] |
徐佳丽, 黄国蕾, 陈云嫩. 轻度重金属污染土壤建材资源化及其环境影响[J]. 中国资源综合利用, 2023, 41(1): 85-88+98. doi: 10.3969/j.issn.1008-9500.2023.01.023
|
[50] |
杨威, 陈一萱, 王海超, 等. 铬污染土壤-粉煤灰陶粒制备工艺研究[J]. 功能材料, 2018, 49(9): 9169-9173+9179.
|
[51] |
LI C, SONG B, CHEN Z, et al. Immobilization of heavy metals in ceramsite prepared using contaminated soils: Effectiveness and potential mechanisms[J]. Chemosphere, 2023, 310: 136846. doi: 10.1016/j.chemosphere.2022.136846
|
[52] |
刘敏, 张伊珊, 刘骁勇, 等. 铬污染土壤生产烧结砖材料的研制及其应用研究[J]. 山东化工, 2022, 51(10): 204-208. doi: 10.3969/j.issn.1008-021X.2022.10.067
|
[53] |
唐文欣, 赵荣萱, 陈云嫩. 轻度重金属污染土壤的建材资源化及其环境影响[J]. 中国资源综合利用, 2022, 40(7): 22-24+27. doi: 10.3969/j.issn.1008-9500.2022.07.007
|
[54] |
蹇守卫, 余后梁, 马保国, 等. 烧结对陶粒的性能及其重金属固化的影响[J]. 硅酸盐通报, 2018, 37(1): 103-109.
|
[55] |
刘贤力, 侯昭胤. 重金属污染土壤回转窑协同处置和资源化利用[J]. 化工进展, 2020, 39(S1): 287-291.
|
[56] |
张宪芝, 何汇洲, 刘松, 等. 重金属污染土壤修复后资源化利用制备陶粒[J]. 砖瓦, 2022(4): 55-58. doi: 10.3969/j.issn.1001-6945.2022.04.014
|
[57] |
SHEN Y, YANG J, CHEN X, et al. Kill two birds with one stone: Ceramisite production using organic contaminated soil[J]. Journal of Hazardous Materials, 2022, 436: 129062. doi: 10.1016/j.jhazmat.2022.129062
|
[58] |
XU G R, ZOU J L, LI G B. Stabilization of heavy metals in sludge ceramsite[J]. Water Research, 2010, 44(9): 2930-2938. doi: 10.1016/j.watres.2010.02.014
|
[59] |
XU G, LIU M, LI G. Stabilization of heavy metals in lightweight aggregate made from sewage sludge and river sediment[J]. Journal of Hazardous Materials, 2013, 260: 74-81. doi: 10.1016/j.jhazmat.2013.04.006
|
[60] |
LI M, SU P, GUO Y, et al. Effects of SiO2, Al2O3 and Fe2O3 on leachability of Zn, Cu and Cr in ceramics incorporated with electroplating sludge[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3143-3150. doi: 10.1016/j.jece.2017.06.019
|
[61] |
MAO L, GUO H, ZHANG W. Addition of waste glass for improving the immobilization of heavy metals during the use of electroplating sludge in the production of clay bricks[J]. Construction and Building Materials, 2018, 163: 875-879. doi: 10.1016/j.conbuildmat.2017.12.177
|