[1] |
操卫平, 冯玉军, 李正山, 等. 高氮低碳废水生物脱氮研究进展[J]. 化工环保, 2004(4): 266-270. doi: 10.3969/j.issn.1006-1878.2004.04.009
|
[2] |
沈耀良. 城市污水处理工艺: 生命周期评价[J]. 苏州科技大学学报(工程技术版), 2019, 32(1): 1-9.
|
[3] |
杜睿, 彭永臻. 城市污水生物脱氮技术变革: 厌氧氨氧化的研究与实践新进展[J]. 中国科学: 技术科学, 2022, 52(3): 389-402.
|
[4] |
NAUFAL M, WU J H. Chemomixoautotrophy and stress adaptation of anammox bacteria: A review[J]. Water Research, 2024, 257: 121663. doi: 10.1016/j.watres.2024.121663
|
[5] |
XIN X, LI B X, LIU X, et al. Starting-up performances and microbial community shifts in the coupling process (SAPD-A) with sulfide autotrophic partial denitrification (SAPD) and anammox treating nitrate and ammonium contained wastewater[J]. Journal of Environmental Management, 2023, 331: 117298. doi: 10.1016/j.jenvman.2023.117298
|
[6] |
沈明玉, 吴莉娜, 李志, 等. 厌氧氨氧化在废水处理中的研究及应用进展[J]. 中国给水排水, 2019, 35(6): 16-21.
|
[7] |
平彩霞, 周鑫, 聂裕婷. 硫自养反硝化工艺亚硝酸盐积累研究进展[J]. 工业水处理, 2024, 44(8): 21-28.
|
[8] |
LI Y Y, HAN Q, LI B. Engineering-scale application of sulfur-driven autotrophic denitrification wetland for advanced treatment of municipal tailwater[J]. Bioresource Technology, 2023, 379: 129035. doi: 10.1016/j.biortech.2023.129035
|
[9] |
WANG T, LI X, WANG H, et al. Sulfur autotrophic denitrification as an efficient nitrogen removals method for wastewater treatment towards lower organic requirement: A review[J]. Water Research, 2023, 245: 120569. doi: 10.1016/j.watres.2023.120569
|
[10] |
SUN Y, NEMATI M. Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters[J]. Bioresource Technology, 2012, 114: 207-216. doi: 10.1016/j.biortech.2012.03.061
|
[11] |
LIU Z H, LIN W M, LUO Q J, et al. Effects of an organic carbon source on the coupling of sulfur (thiosulfate)-driven denitration with Anammox process[J]. Bioresource Technology, 2021, 335: 125280. doi: 10.1016/j.biortech.2021.125280
|
[12] |
QIU Y Y, ZHANG L, MU X T, et al. Overlooked pathways of denitrification in a sulfur-based denitrification system with organic supplementation[J]. Water Research, 2020, 169: 115084. doi: 10.1016/j.watres.2019.115084
|
[13] |
殷同昕, 操家顺, 张腾, 等. 不同碳源下反硝化亚硝酸盐积累情况研究进展[J]. 应用化工, 2020, 49(11): 2919-2925. doi: 10.3969/j.issn.1671-3206.2020.11.053
|
[14] |
张文勃. 硫代硫酸盐驱动脱氮与厌氧氨氧化耦合处理硝酸盐废水的研究[D]. 西安: 长安大学, 2023.
|
[15] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. .
|
[16] |
REN Y, YU G, SHI C P, et al. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses[J]. Imeta, 2022, 1: e12. doi: 10.1002/imt2.12
|
[17] |
YANG Y, CALLEJA P P, LIU Y W, et al. Assessing intermediate formation and electron competition during thiosulfate-driven denitrification: An experimental and modeling study[J]. Environmental Science & Technology, 2022, 56(16): 11760-11770.
|
[18] |
贾艳萍, 薛东奇, 刘启帆, 等. 亚硫酸盐活化技术及其在废水处理中的应用[J]. 化工进展, 2022, 41(1): 418-426.
|
[19] |
LIU Y H, WANG Y M, FAN G D, et al. Metagenomics reveals functional species and microbial mechanisms of an enriched thiosulfate-driven denitratation consortia[J]. Bioresource Technology, 2021, 341: 125916. doi: 10.1016/j.biortech.2021.125916
|
[20] |
元毛毛, 刘研萍, 陈雪, 等. 不同有机负荷下混合蔬菜废物厌氧消化性能分析[J]. 农业工程学报, 2016, 32(18): 213-218. doi: 10.11975/j.issn.1002-6819.2016.18.029
|
[21] |
阎宁, 金雪标, 张俊清. 甲醇与葡萄糖为碳源在反硝化过程中的比较[J]. 上海师范大学学报(自然科学版), 2002(3): 41-44.
|
[22] |
WANG Y, SABBA F, BOTT C, et al. Using kinetics and modeling to predict denitrification fluxes in elemental-sulfur-based biofilms[J]. Biotechnology and Bioengineering, 2019, 116(10): 2698-2709. doi: 10.1002/bit.27094
|
[23] |
ZHANG L, ZHANG Z F, SUN R R, et al. Self-accelerating sulfur reduction via polysulfide to realize a high-rate sulfidogenic reactor for wastewater treatment[J]. Water Research, 2018, 130: 161-167. doi: 10.1016/j.watres.2017.11.062
|
[24] |
LIANG S, ZHANG L, JIANG F. Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage[J]. Water Research, 2016, 100: 421-428. doi: 10.1016/j.watres.2016.05.036
|
[25] |
王亚鑫, 吴玉, 张洪琳, 等. 微生物硫代谢及其驱动下建立的生物生态关系[J]. 微生物学报, 2022, 62(3): 930-948.
|
[26] |
GABARRÓ J, HERNÁNDEZ-DEL AMO E, GICH F, et al. Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate[J]. Water Research, 2013, 47(19): 7066-7077. doi: 10.1016/j.watres.2013.07.057
|
[27] |
YANG Y, GERRITY S, COLLINS G, et al. Enrichment and characterization of autotrophic Thiobacillus denitrifiers from anaerobic sludge for nitrate removal[J]. Process Biochemistry, 2018, 68: 165-170. doi: 10.1016/j.procbio.2018.02.017
|