[1] |
陈峰, 李晓慧, 王文静, 等. 2018~2022年长江流域总磷时空变化特征研究[J]. 水利水电快报, 2023, 44(8): 91-97.
|
[2] |
范向军, 邓先明, 谢国超, 等. 金沙江梯级水电站运行后三峡库区总磷通量变化分析[J]. 环境工程学报, 2023, 17(12): 3969-3977. doi: 10.12030/j.cjee.202309008
|
[3] |
陈水勇, 吴振名, 俞伟波, 等. 水体富营养化的形成、危害和防治[J]. 环境科学与技术, 1999(2): 12-16.
|
[4] |
中华人民共和国国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838-2002[S]. 北京, 中国环境科学出版社, 2002.
|
[5] |
CHU Y B, LI M, LLU J W, et al. Molecular insights into the mechanism and the efficiency-structure relationship of phosphorus removal by coagulation[J]. Water Research, 2018, 147: 195-203. doi: 10.1016/j.watres.2018.10.006
|
[6] |
LI M X, FU S Y, HAN Y T, et al. Synergistic removal of carbon and phosphorus by modified carbon-based magnetic materials[J]. Chemical Engineering Journal, 2024, 491: 151244. doi: 10.1016/j.cej.2024.151244
|
[7] |
WU F, YU Q L, GAUVIN F, et al. Phosphorus removal from aqueous solutions by adsorptive concrete aggregates[J]. Journal of Cleaner Production, 2021, 278: 123933. doi: 10.1016/j.jclepro.2020.123933
|
[8] |
SCOTT I, PENN C J. Effects of redox on the phosphorus removal ability of iron-rich phosphorus sorption materials[J]. Chemosphere, 2024, 352: 141416. doi: 10.1016/j.chemosphere.2024.141416
|
[9] |
YU B Y, SUN J Q, ZHAO K, et al. Low-maintenance anti-fouling and phosphorus removal of an electro-MBR with Fe anode-cathodic membrane[J]. Journal of Membrane Science, 2023, 672: 121417. doi: 10.1016/j.memsci.2023.121417
|
[10] |
OMWENE P I, KOBYA M, CAN O T. Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes[J]. Ecological Engineering, 2018, 123: 65-73. doi: 10.1016/j.ecoleng.2018.08.025
|
[11] |
HUANG N, XU Z B, Wang W L, et al. Elimination of amino trimethylene phosphonic acid (ATMP) antiscalant in reverse osmosis concentrate using ozone: Anti-precipitation property changes and phosphorus removal[J]. Chemosphere, 2022, 291(3): 133027.
|
[12] |
LI Y Y, RAHMAN S M, LI G Y, et al. The composition and implications of polyphosphate-metal in enhanced biological phosphorus removal systems[J]. Environmental Science & Technology, 2019, 53(3): 1536-1544.
|
[13] |
NADEEM K, ALLIET M, PLANA Q, et al. Modeling, simulation and control of biological and chemical P-removal processes for membrane bioreactors (MBRs) from lab to full-scale applications: State of the art[J]. Science of the Total Environment, 2022, 809: 151109. doi: 10.1016/j.scitotenv.2021.151109
|
[14] |
罗义, 赵丙昊, 邢波波, 等. 天冬氨酸对亚铁混凝剂絮体结构及磷酸盐去除效果的影响[J]. 环境工程学报, 2022, 16(6): 1815-1822. doi: 10.12030/j.cjee.202201142
|
[15] |
侯培强, 宋静文, 王启镔, 等. 基于碳源储存的污水生物脱氮除磷效率及污水处理系统延伸成本分析[J]. 环境工程学报, 2023, 17(4): 1138-1144. doi: 10.12030/j.cjee.202209163
|
[16] |
郑晓英, 李楠, 邱丽佳, 等. 城市污水处理厂二级处理出水中磷深度去除技术[J]. 环境工程学报, 2019, 13(8): 1839-1846. doi: 10.12030/j.cjee.201811003
|
[17] |
ZAHED M A, SLEHI S, TABARI Y, et al. Phosphorus removal and recovery: state of the science and challenges[J]. Environment Science and Pollution Research, 2022, 29(39): 58561-58589. doi: 10.1007/s11356-022-21637-5
|
[18] |
ZHENG Y L, ZINNERMAN A R, GAO B. Comparative investigation of characteristics and phosphate removal by engineered biochars with different loadings of magnesium, aluminum, or iron[J]. Science of the Total Environment, 2020, 747: 141277. doi: 10.1016/j.scitotenv.2020.141277
|
[19] |
陈卓然, 李晨, 张怡然, 等. 聚氯化铝铁处理引江原水试验研究[J]. 中国给水排水, 2023, 39(3): 62-66.
|
[20] |
YANG B Q, GRAHAM N, LIU P, et al. Atomic-Level Structural Differences between Fe(III) Coprecipitates Generated by the Addition of Fe(III) Coagulants and by the Oxidation of Fe(II) Coagulants Determine Their Coagulation Behavior in Phosphate and DOM Removal[J]. Environmental Science & Technology, 2023, 57(33): 12489-12500.
|
[21] |
Gan Y H, Hang Z H, Wu B D, et al. Basicity of titanium-based coagulants matters in the treatment of low-turbidity water[J]. Separation and Purification Technology, 2022, 281: 119989. doi: 10.1016/j.seppur.2021.119989
|
[22] |
GAN Y H, LI J B, ZHANG L, et al. Potential of titanium coagulants for water and wastewater treatment: Current status and future perspectives[J]. Chemical Engineering Journal, 2021, 406: 126837. doi: 10.1016/j.cej.2020.126837
|
[23] |
JIA Y, ZENG W, FAN Z W, et al. An effective titanium salt dosing strategy for phosphorus removal from wastewater: Synergistic enhancement of chemical and biological treatment[J]. Science of the Total Environment, 2022, 842: 156960. doi: 10.1016/j.scitotenv.2022.156960
|
[24] |
JEON K J, AHN J H. Evaluation of titanium tetrachloride and polytitanium tetrachloride to remove phosphorus from wastewater[J]. Separation and Purification Technology, 2018, 197: 197-201. doi: 10.1016/j.seppur.2018.01.016
|
[25] |
甘永海, 张丽, 吴兵党, 等. 基于水解-沉淀形态分布的金属盐混凝过程关键因子解析[J]. 中国科学: 化学, 2021, 51(4): 458-467.
|
[26] |
王晓萌. 乙酰丙酮凝胶化改性钛盐混凝剂的制备及复配优化[D]. 南京: 南京大学 2018.
|
[27] |
赵博, 季蒙, 宋永会, 等. 磷酸盐对不同铝混凝剂混凝处理过程中铝水解和Al(OH)3聚集的影响[J]. 环境科学学报, 2023, 43(12): 16-25.
|
[28] |
韩晓刚, 刘转年, 陆亭伊, 等. 改性聚氯化铝残渣吸附剂制备及其除磷性能[J]. 无机盐工业, 2019, 51(4): 59-62.
|
[29] |
WANG X M, GAN Y H, GUO S, et al. Advantages of titanium xerogel over titanium tetrachloride and polytitanium tetrachloride in coagulation: A mechanism analysis[J]. Water Research, 2018, 132: 350-360. doi: 10.1016/j.watres.2017.12.081
|
[30] |
鞠佳伟, 高玉萍, 何赞, 等. pH对铝盐絮凝剂形态分布与混凝除氟性能的影响[J]. 环境工程学报, 2015, 9(6): 2563-2568. doi: 10.12030/j.cjee.20150605
|
[31] |
ZHAO H, LIU H J, QU J H. Effect of pH on the aluminum salts hydrolysis during coagulation process: Formation and decomposition of polymeric aluminum species[J]. Journal of Colloid and Interface Science, 2009, 330(1): 105-112. doi: 10.1016/j.jcis.2008.10.020
|
[32] |
GUO K Y, WANG Z N, PAN J W, et al. Highly efficient Al-Ti gel as a coagulant for surface water treatment: Insights into the hydrolysate transformation and coagulation mechanism[J]. Water Research, 2022, 221: 118826. doi: 10.1016/j.watres.2022.118826
|
[33] |
BOCZKA G, FERNANDES A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review[J]. Chemical Engineering Journal, 2017, 320: 608-633. doi: 10.1016/j.cej.2017.03.084
|
[34] |
PAN Z X, ZENG B H, SHEN L G, et al. Innovative treatment of industrial effluents through combining ferric iron and attapulgite application[J]. Chemosphere, 2024, 358: 142132. doi: 10.1016/j.chemosphere.2024.142132
|