[1] LIU F, WANG Z J, WEI Y Y, et al. The leading role of adsorbed lead in PM2.5-induced hippocampal neuronal apoptosis and synaptic damage[J]. Journal of Hazardous Materials, 2021, 416: 125867. doi: 10.1016/j.jhazmat.2021.125867
[2] ZHANG J W, SUN X H, DENG J G, et al. Emission characteristics of heavy metals from a typical copper smelting plant[J]. Journal of Hazardous Materials, 2022, 424: 127311. doi: 10.1016/j.jhazmat.2021.127311
[3] HE X C, ZHAO Q T, CHAI X Y, et al. Contribution and effects of PM2.5-bound lead to the cardiovascular risk of workers in a non-ferrous metal smelting area considering chemical speciation and bioavailability[J]. Environmental Science & Technology, 2023, 57(4): 1743-1754.
[4] 冉茂霞, 吴迪, 史永富, 等. 砷在水生生物中的生物累积、转化及在其他生物体内的代谢毒理学研究进展[J]. 环境化学, 2024, 43(4): 1069-1084. doi: 10.7524/j.issn.0254-6108.2022100401 RAN M X, WU D, SHI Y F, et al. Research progress on arsenic’s bioaccumulation and biotransformation in aquatic organisms, and its metabolism and toxicology in other organisms[J]. Environmental Chemistry, 2024, 43(4): 1069-1084 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022100401
[5] SHARMA V K, SOHN M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation[J]. Environment International, 2009, 35(4): 743-759. doi: 10.1016/j.envint.2009.01.005
[6] 马婉琪, 张娜, 刘思金, 等. 重金属砷、镉和铅对树突状细胞的差异化功能损伤[J]. 环境化学, 2024, 43(5): 1474-1483. doi: 10.7524/j.issn.0254-6108.2023050404 MA W Q, ZHANG N, LIU S J, et al. Diverse effects of heavy metals on the functions of dendritic cells[J]. Environmental Chemistry, 2024, 43(5): 1474-1483 (in Chinese). doi: 10.7524/j.issn.0254-6108.2023050404
[7] RAHAMAN M S, RAHMAN M M, MISE N, et al. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management[J]. Environmental Pollution, 2021, 289: 117940. doi: 10.1016/j.envpol.2021.117940
[8] QI Z H, ZHAO Q T, YU Z X, et al. Assessing the impact of PM2.5-bound arsenic on cardiovascular risk among workers in a non-ferrous metal smelting area: Insights from chemical speciation and bioavailability[J]. Environmental Science & Technology, 2024, 58(19): 8228-8238.
[9] 冯于耀, 史建武, 钟曜谦, 等. 有色冶炼园区道路扬尘中重金属污染特征及健康风险评价[J]. 环境科学, 2020, 41(8): 3547-3555. FENG Y Y, SHI J W, ZHONG Y Q, et al. Pollution characteristics and health risk assessment of heavy metals in road dust from non-ferrous smelting parks[J]. Environmental Science, 2020, 41(8): 3547-3555 (in Chinese).
[10] LYU Y, ZHANG K, CHAI F H, et al. Atmospheric size-resolved trace elements in a city affected by non-ferrous metal smelting: Indications of respiratory deposition and health risk[J]. Environmental Pollution, 2017, 224: 559-571. doi: 10.1016/j.envpol.2017.02.039
[11] FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nature Reviews. Microbiology, 2021, 19(1): 55-71. doi: 10.1038/s41579-020-0433-9
[12] 刘昌孝. 肠道菌群与健康、疾病和药物作用的影响[J]. 中国抗生素杂志, 2018, 43(1): 1-14. doi: 10.3969/j.issn.1001-8689.2018.01.001 LIU C X. Gut microbiota: The effects of health, illness and medicines[J]. Chinese Journal of Antibiotics, 2018, 43(1): 1-14 (in Chinese). doi: 10.3969/j.issn.1001-8689.2018.01.001
[13] HSU C L, SCHNABL B. The gut-liver axis and gut microbiota in health and liver disease[J]. Nature Reviews. Microbiology, 2023, 21(11): 719-733. doi: 10.1038/s41579-023-00904-3
[14] 高艳侠, 卫子扬, 张珩琳, 等. 环境化学品暴露与宿主肠道微生态健康的研究进展与展望[J]. 环境化学, 2023, 42(9): 2893-2912. doi: 10.7524/j.issn.0254-6108.2022110205 GAO Y X, WEI Z Y, ZHANG H L, et al. Environmental chemicals exposure and host intestinal microecology: Research progress and prospective[J]. Environmental Chemistry, 2023, 42(9): 2893-2912 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022110205
[15] LU K, ABO R P, SCHLIEPER K A, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: An integrated metagenomics and metabolomics analysis[J]. Environmental Health Perspectives, 2014, 122(3): 284-291. doi: 10.1289/ehp.1307429
[16] CHI L, BIAN X M, GAO B, et al. The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome[J]. Toxicological Sciences, 2017, 160(2): 193-204. doi: 10.1093/toxsci/kfx174
[17] GOKULAN K, ARNOLD M G, JENSEN J, et al. Exposure to arsenite in CD-1 mice during juvenile and adult stages: Effects on intestinal microbiota and gut-associated immune status[J]. mBio, 2018, 9(4): e01418-18.
[18] LI D, YANG Y, LI Y X, et al. Changes induced by chronic exposure to high arsenic concentrations in the intestine and its microenvironment[J]. Toxicology, 2021, 456: 152767. doi: 10.1016/j.tox.2021.152767
[19] CHEN L K, LI C J, ZHONG X T, et al. The gut microbiome promotes arsenic metabolism and alleviates the metabolic disorder for their mammal host under arsenic exposure[J]. Environment International, 2023, 171: 107660. doi: 10.1016/j.envint.2022.107660
[20] XIE S S, ZHANG C H, ZHAO J Z, et al. Exposure to concentrated ambient PM2.5 (CAPM) induces intestinal disturbance via inflammation and alternation of gut microbiome[J]. Environment International, 2022, 161: 107138. doi: 10.1016/j.envint.2022.107138
[21] PAN R B, WANG J N, CHANG W W, et al. Association of PM2.5 components with acceleration of aging: Moderating role of sex hormones[J]. Environmental Science & Technology, 2023, 57(9): 3772-3782.
[22] DONG X W, YAO S Q, DENG L F, et al. Alterations in the gut microbiota and its metabolic profile of PM2.5 exposure-induced thyroid dysfunction rats[J]. Science of the Total Environment, 2022, 838: 156402. doi: 10.1016/j.scitotenv.2022.156402
[23] LIU J H, SU X H, LU J J, et al. PM2.5 induces intestinal damage by affecting gut microbiota and metabolites of rats fed a high-carbohydrate diet[J]. Environmental Pollution, 2021, 279: 116849. doi: 10.1016/j.envpol.2021.116849
[24] WANG J X, YAN Y W, SI H L, et al. The effect of real-ambient PM2.5 exposure on the lung and gut microbiomes and the regulation of Nrf2[J]. Ecotoxicology and Environmental Safety, 2023, 254: 114702. doi: 10.1016/j.ecoenv.2023.114702
[25] BAILEY M J, HOLZHAUSEN E A, MORGAN Z E M, et al. Postnatal exposure to ambient air pollutants is associated with the composition of the infant gut microbiota at 6-months of age[J]. Gut Microbes, 2022, 14(1): 2105096. doi: 10.1080/19490976.2022.2105096
[26] MÖLLER W, HÄUSSINGER K, ZIEGLER-HEITBROCK L, et al. Mucociliary and long-term particle clearance in airways of patients with immotile Cilia[J]. Respiratory Research, 2006, 7(1): 10. doi: 10.1186/1465-9921-7-10
[27] FENG J, CAVALLERO S, HSIAI T, et al. Impact of air pollution on intestinal redox lipidome and microbiome[J]. Free Radical Biology and Medicine, 2020, 151: 99-110. doi: 10.1016/j.freeradbiomed.2019.12.044
[28] WANG P F, DU H L, FU Y Q, et al. Role of human gut bacteria in arsenic biosorption and biotransformation[J]. Environment International, 2022, 165: 107314. doi: 10.1016/j.envint.2022.107314
[29] MAKAROVA K, SLESAREV A, WOLF Y, et al. Comparative genomics of the lactic acid bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(42): 15611-15616.
[30] BARICHELLA M, SEVERGNINI M, CILIA R, et al. Unraveling gut microbiota in Parkinson’s disease and atypical Parkinsonism[J]. Movement Disorders, 2019, 34(3): 396-405. doi: 10.1002/mds.27581
[31] HASEGAWA S, GOTO S, TSUJI H, et al. Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease[J]. PLoS One, 2015, 10(11): e0142164. doi: 10.1371/journal.pone.0142164
[32] PLAZA-DÍAZ J, RUIZ-OJEDA F J, VILCHEZ-PADIAL L M, et al. Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases[J]. Nutrients, 2017, 9(6): 555. doi: 10.3390/nu9060555
[33] KIM S, KIM H, YIM Y S, et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring[J]. Nature, 2017, 549(7673): 528-532. doi: 10.1038/nature23910
[34] FIJAN S. Microorganisms with claimed probiotic properties: An overview of recent literature[J]. International Journal of Environmental Research and Public Health, 2014, 11(5): 4745-4767. doi: 10.3390/ijerph110504745
[35] MIURA H, OZAKI N, SAWADA M, et al. A link between stress and depression: Shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression[J]. Stress, 2008, 11(3): 198-209. doi: 10.1080/10253890701754068
[36] LIANG H W, DAI Z L, LIU N, et al. Dietary L-tryptophan modulates the structural and functional composition of the intestinal microbiome in weaned piglets[J]. Frontiers in Microbiology, 2018, 9: 1736. doi: 10.3389/fmicb.2018.01736
[37] 陈菁青, 郑建华, 董巧燕, 等. 色氨酸代谢调控肠道应激损伤作用的研究进展[J]. 中国实验动物学报, 2024, 32(4): 539-546. doi: 10.3969/j.issn.1005-4847.2024.04.015 CHEN J Q, ZHENG J H, DONG Q Y, et al. Regulation of tryptophan metabolism in stress-related gastrointestinal disorders[J]. Acta Laboratorium Animalis Scientia Sinica, 2024, 32(4): 539-546 (in Chinese). doi: 10.3969/j.issn.1005-4847.2024.04.015