Ma C X, Chhikara S, Minocha R, et al. Reduced silver nanoparticle phytotoxicity in Crambe abyssinica with enhanced glutathione production by overexpressing bacterial γ-glutamylcysteine synthase [J]. Environmental Science & Technology, 2015, 49(16): 10117-10126
|
Yuan L, Richardson C J, Ho M, et al. Stress responses of aquatic plants to silver nanoparticles [J]. Environmental Science & Technology, 2018, 52(5): 2558-2565
|
Leonardo T, Farhi E, Pouget S, et al. Silver accumulation in the green microalga Coccomyxa actinabiotis: Toxicity, in situ speciation, and localization investigated using synchrotron XAS, XRD, and TEM [J]. Environmental Science & Technology, 2016, 50(1): 359-367
|
俞幼萍, 商成杰. 银纤维制备及在防辐射纺织品中的应用[J]. 针织工业, 2018(1): 27-31 Yu Y P, Shang C J. Preparation of silver fiber and its application in radiation-proof textiles [J]. Knitting Industries, 2018
(1): 27-31 (in Chinese)
|
Yasur J, Rani P U. Environmental effects of nanosilver: Impact on castor seed germination, seedling growth, and plant physiology [J]. Environmental Science and Pollution Research, 2013, 20(12): 8636-8648
|
Wu J, Wang G Y, Vijver M G, et al. Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation [J]. Environmental Pollution, 2020, 261: 114117
|
Tong X L, Guo N, Dang Z Y, et al. In vivo biosynthesis and spatial distribution of Ag nanoparticles in maize (Zea mays L.) [J]. IET Nanobiotechnology, 2018, 12(7): 987-993
|
Mo F, Li H B, Li Y H, et al. Exploration of defense and tolerance mechanisms in dominant species of mining area - Trifolium pratense L. upon exposure to silver [J]. The Science of the Total Environment, 2022, 811: 151380
|
Guo H Y, Han F, Shang H P, et al. New insight into naturally formed nanosilver particles: Role of plant root exudates [J]. Environmental Science: Nano, 2021, 8(6): 1580-1592
|
Yin L Y, Colman B P, McGill B M, et al. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants [J]. PLoS One, 2012, 7(10): e47674
|
Homaee M B, Ehsanpour A A. Silver nanoparticles and silver ions: Oxidative stress responses and toxicity in potato (Solanum tuberosum L) grown in vitro [J]. Horticulture, Environment, and Biotechnology, 2016, 57(6): 544-553
|
Ghorbanpour M, Hatami M. Changes in growth, antioxidant defense system and major essential oils constituents of Pelargonium graveolens plant exposed to nano-scale silver and thidiazuron [J]. Indian Journal of Plant Physiology, 2015, 20(2): 116-123
|
Shahid M, Niazi N K, Rinklebe J, et al. Trace elements-induced phytohormesis: A critical review and mechanistic interpretation [J]. Critical Reviews in Environmental Science and Technology, 2020, 50(19): 1984-2015
|
Sun J Z, Wang L K, Li S, et al. Toxicity of silver nanoparticles to Arabidopsis: Inhibition of root gravitropism by interfering with auxin pathway [J]. Environmental Toxicology and Chemistry, 2017, 36(10): 2773-2780
|
Zhang H L, Du W C, Peralta-Videa J R, et al. Metabolomics reveals how cucumber (Cucumis sativus) reprograms metabolites to cope with silver ions and silver nanoparticle-induced oxidative stress [J]. Environmental Science & Technology, 2018, 52(14): 8016-8026
|
Malone L C, Mourtzinis S, Gaska J M, et al. Cover crops in a Wisconsin annual cropping system: Feasibility and yield effects [J]. Agronomy Journal, 2022, 114(2): 1052-1067
|
Tahir M, Li C H, Zeng T R, et al. Mixture composition influenced the biomass yield and nutritional quality of legume-grass pastures [J]. Agronomy, 2022, 12(6): 1449
|
Ke M J, Qu Q, Peijnenburg W J G M, et al. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways [J]. Science of the Total Environment, 2018, 644: 1070-1079
|
Zhao Z L, Xu L M, Wang Y, et al. Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii: Photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis [J]. Environmental Science and Pollution Research International, 2021, 28(12): 15032-15042
|
Shabnam N, Pardha-Saradhi P. Floating and submerged leaves of Potamogeton nodosus exhibit distinct variation in the antioxidant system as an ecophysiological adaptive strategy [J]. Functional Plant Biology, 2016, 43(4): 346-355
|
Tarrahi R, Khataee A, Movafeghi A, et al. Toxicological implications of selenium nanoparticles with different coatings along with Se4+ on Lemna minor [J]. Chemosphere, 2017, 181: 655-665
|
Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nature Biotechnology, 2011, 29(7): 644-652
|
Fu L M, Niu B F, Zhu Z W, et al. CD-HIT: Accelerated for clustering the next-generation sequencing data [J]. Bioinformatics, 2012, 28(23): 3150-3152
|
Legocka J, Sobieszczuk-Nowicka E. Calcium variously mediates the effect of cytokinin on chlorophyll and LHCPⅡ accumulation during greening in barley leaves and cucumber cotyledons [J]. Acta Biologica Cracoviensia Series Botanica, 2015, 56(2): 27-34
|
Diaz-Vivancos P, Faize M, Barba-Espin G, et al. Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums [J]. Plant Biotechnology Journal, 2013, 11(8): 976-985
|
冯甜华. 叶绿素铜钠盐研究[J]. 食品安全导刊, 2015(32): 72 Feng T H. Study on sodium copper chlorophyllin [J]. China Food Safety Magazine, 2015(32
): 72 (in Chinese)
|
do Nascimento J L, de Almeida A A F, Barroso J P, et al. Physiological, ultrastructural, biochemical and molecular responses of young cocoa plants to the toxicity of Cr (Ⅲ) in soil [J]. Ecotoxicology and Environmental Safety, 2018, 159: 272-283
|
Zheng S M, Zhou Q X, Chen C H, et al. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris [J]. The Science of the Total Environment, 2019, 660: 1182-1190
|
Jiang H S, Li M, Chang F Y, et al. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza [J]. Environmental Toxicology and Chemistry, 2012, 31(8): 1880-1886
|
Mirmoeini T, Pishkar L, Kahrizi D, et al. Phytotoxicity of green synthesized silver nanoparticles on Camelina sativa L. [J]. Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology, 2021, 27(2): 417-427
|
Varga M, Horvatić J, Barišić L, et al. Physiological and biochemical effect of silver on the aquatic plant Lemna gibba L.: Evaluation of commercially available product containing colloidal silver [J]. Aquatic Toxicology, 2019, 207: 52-62
|
Du J, Tang J H, Xu S D, et al. A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms [J]. Regulatory Toxicology and Pharmacology, 2018, 98: 231-239
|
王灵哲, 史彦江, 宋锋惠, 等. 不同施肥处理对平欧杂种榛光合日变化及产量的影响[J]. 新疆农业科学, 2018, 55(8): 1495-1504
Wang L Z, Shi Y J, Song F H, et al. Effects of different fertilization treatments on the diurnal variation of photosynthesis and yield of hybrid of hazelnut [J]. Xinjiang Agricultural Sciences, 2018, 55(8): 1495-1504 (in Chinese)
|
李丹丹, 陈静波, 宗俊勤, 等. 施氮对'Tifton85’狗牙根光合特性的影响[J]. 草业科学, 2017, 34(3): 472-478
Li D D, Chen J B, Zong J Q, et al. Effects of nitrogen on photosynthetic characteristics of 'Tifton85’ bermudagrass [J]. Pratacultural Science, 2017, 34(3): 472-478 (in Chinese)
|
Calabrese E J. Hormesis: Why it is important to toxicology and toxicologists [J]. Environmental Toxicology and Chemistry, 2008, 27(7): 1451-1474
|
Li X X, Ke M J, Zhang M, et al. The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: Growth, photosynthesis and antioxidant system [J]. Environmental Pollution, 2018, 232: 212-219
|
Liu Y, Wang X N, Wang J, et al. Graphene oxide attenuates the cytotoxicity and mutagenicity of PCB 52 via activation of genuine autophagy [J]. Environmental Science & Technology, 2016, 50(6): 3154-3164
|
Hakkila K, Antal T, Gunnelius L, et al. Group 2 sigma factor mutant ΔsigCDE of the cyanobacterium Synechocystis sp. PCC 6803 reveals functionality of both carotenoids and flavodiiron proteins in photoprotection of photosystem Ⅱ [J]. Plant & Cell Physiology, 2013, 54(11): 1780-1790
|
Wu J J, Li S Y, Li C, et al. The non-canonical effects of heme oxygenase-1, a classical fighter against oxidative stress [J]. Redox Biology, 2021, 47: 102170
|
Timm S, Nunes-Nesi A, Pärnik T, et al. A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis [J]. The Plant Cell, 2008, 20(10): 2848-2859
|
Cousins A B, Walker B J, Pracharoenwattana I, et al. Peroxisomal hydroxypyruvate reductase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release [J]. Photosynthesis Research, 2011, 108(2): 91-100
|
Liu Y P, Guérard F, Hodges M, et al. Phosphomimetic T335D mutation of hydroxypyruvate reductase 1 modifies cofactor specificity and impacts Arabidopsis growth in air [J]. Plant Physiology, 2020, 183(1): 194-205
|
梁天柱, 程凤玲, 张晓军, 等. 花生乙醇酸氧化酶基因鉴定及其响应非生物胁迫的表达分析[J]. 花生学报, 2022, 51(3): 13-20
, 27 Liang T Z, Cheng F L, Zhang X J, et al. Identification of glycolate oxidase gene and expression analysis on its responding to abiotic stresses in peanut [J]. Journal of Peanut Science, 2022, 51(3): 13-20, 27 (in Chinese)
|
Sun C C, Chen S, Jin Y J, et al. Effects of the herbicide imazethapyr on photosynthesis in PGR5- and NDH-deficient Arabidopsis thaliana at the biochemical, transcriptomic, and proteomic levels [J]. Journal of Agricultural and Food Chemistry, 2016, 64(22): 4497-4504
|
Yuan L Y, Zheng Y S, Nie L B, et al. Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in Wucai (Brassica campestris L.) [J]. BMC Genomics, 2021, 22(1): 687
|
Subramanyam R, Jolley C, Thangaraj B, et al. Structural and functional changes of PSI-LHCI super complexes of Chlamydomonas reinhardtii cells grown under high salt conditions [J]. Planta, 2010, 231(4): 913-922
|
Goussi R, Manfredi M, Marengo E, et al. Thylakoid proteome variation of Eutrema salsugineum in response to drought and salinity combined stress [J]. Biochimica et Biophysica Acta Bioenergetics, 2021, 1862(12): 148482
|
Rova E M, Ewen B M, Fredriksson P O, et al. Photoactivation and photoinhibition are competing in a mutant of Chlamydomonas reinhardtii lacking the 23-kDa extrinsic subunit of photosystem Ⅱ [J]. The Journal of Biological Chemistry, 1996, 271(46): 28918-28924
|
Chauhan R, Awasthi S, Indoliya Y, et al. Transcriptome and proteome analyses reveal selenium mediated amelioration of arsenic toxicity in rice (Oryza sativa L.) [J]. Journal of Hazardous Materials, 2020, 390: 122122
|
Lu H X, Cheng J, Wang Z Y, et al. Enhancing photosynthetic characterization and biomass productivity of Nannochloropsis oceanica by nuclear radiation [J]. Frontiers in Energy Research, 2020, 8: 143
|
Ko S S, Jhong C M, Lin Y J, et al. Blue light mediates chloroplast avoidance and enhances photoprotection of vanilla orchid [J]. International Journal of Molecular Sciences, 2020, 21(21): 8022
|
Wang S H, Blumwald E. Stress-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated vacuoles [J]. The Plant Cell, 2014, 26(12): 4875-4888
|
赵晋锋, 王高鸿, 杜艳伟, 等. 谷子磷酸烯醇式丙酮酸羧化酶基因(PEPC)对逆境胁迫的响应[J]. 华北农学报, 2019, 34(4): 67-74
Zhao J F, Wang G H, Du Y W, et al. Response of phosphoenolpyruvate carboxylase (PEPC) gene to abiotic stresses in foxtail millet [J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4): 67-74 (in Chinese)
|
唐犁, 施教耐. 水分胁迫对露花磷酸烯醇式丙酮酸羧化酶表达水平及特性的影响[J]. 植物生理学报, 1997, 23(2): 192-198
Tang L, Shi J N. The effects of water stress on leaf PEPCases in Mesembryanthemum cordifolium [J]. Acta Photophysiologica Sinica, 1997, 23(2): 192-198 (in Chinese)
|