[1] |
2022年中国生态环境状况公报(摘录)[J]. 环境保护, 2023, 51(Z2): 64-81.
|
[2] |
刘昔, 邓兆林, 张露, 等. 洪湖沉积物内源污染及其氮磷释放特征[J]. 环境科学研究, 2022, 35(1): 80-88.
|
[3] |
罗晓, 张峻搏, 何磊, 等. 钢渣对水体中磷的去除性能及机制解析[J]. 环境科学, 2021, 42(5): 2324-2333.
|
[4] |
宋小宝, 何世颖, 冯彦房, 等. 载镧磁性水热生物炭的制备及其除磷性能[J]. 环境科学, 2020, 41(2): 773-783.
|
[5] |
韩芸, 胡玉洁, 连洁, 等. 铝污泥酸化提取液改性沸石的除磷特性及机制[J]. 环境科学, 2019, 40(8): 3660-3667.
|
[6] |
付军, 范芳, 李海宁, 等. 铁锰复合氧化物/壳聚糖珠: 一种环境友好型除磷吸附剂[J]. 环境科学, 2016, 37(12): 4882-4890.
|
[7] |
LIU H, GUO W L, LIU Z H, et al. Effective adsorption of phosphate from aqueous solution by La-based metal-organic frameworks[J]. RSC Advances, 2016, 6(107): 105282-105287. doi: 10.1039/C6RA24568D
|
[8] |
LUO F, FENG X, LIY, et al. Magnetic amino-functionalized lanthanum metal-organic framework for selective phosphate removal from water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125906. doi: 10.1016/j.colsurfa.2020.125906
|
[9] |
ZHANG X T, SUN F L, HE J J, et al. Robust phosphate capture over inorganic adsorbents derived from lanthanum metal organic frameworks[J]. Chemical Engineering Journal, 2017, 326: 1086-1094. doi: 10.1016/j.cej.2017.06.052
|
[10] |
徐鹏, 戴伟, 石伟山, 等. ZIF-8/改性聚丙烯腈电纺纳米纤维的制备及其高效去除水中孔雀石绿(英文)[J]. 无机化学学报, 2023, 39(10): 1959-1968.
|
[11] |
LIN L S, NIU C G, TANG N, et al. Lanthanum hydroxides modified poly(epichlorohydrin)-ethylenediamine composites for highly efficient phosphate removal and bacteria disinfection[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588: 124344.
|
[12] |
娄娅娅, 王春梅. 纤维基金属有机骨架材料的制备及应用进展[J]. 棉纺织技术, 2021, 49(9): 75-79. doi: 10.3969/j.issn.1001-7415.2021.09.019
|
[13] |
李婷婷, 张志明, 韩正波. 基于静电纺丝技术的聚合物基MOFs纳米纤维膜的研究进展[J]. 无机材料学报, 2021, 36(6): 592-600.
|
[14] |
李雅雯. 磁性镧基MOFs的制备及其对污水中磷酸盐选择性吸附研究[D]. 武汉: 华中科技大学, 2020.
|
[15] |
SONG J L, HUANG M H, LIN X H, et al. Novel Fe-based metal-organic framework (MOF) modified carbon nanofiber as a highly selective and sensitive electrochemical sensor for tetracycline detection[J]. Chemical Engineering Journal, 2022(1), 427: 130913.
|
[16] |
HAN C Y, XIE J, MIN X Z. Efficient adsorption H3AsO4 and Cr(VI) from strongly acidic solutions by La-Zr bimetallic MOFs: Crystallinity role and mechanism[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108982. doi: 10.1016/j.jece.2022.108982
|
[17] |
HE Q Q, ZHAO H J, TENG Z D, et al. Phosphate removal and recovery by lanthanum-based adsorbents: A review for current advance[J]. Chemosphere, 2022, 303(P1): 134987.
|
[18] |
YIN C, PENG Y Y, LI H J, et al. Facile construction of ZIF-94/PAN nanofiber by electrospinning for the removal of Co(II) from wastewater[J]. Scientific Reports, 2024, 14(1): 414.
|
[19] |
TAHER S, VALI A, PARYA K, et al. A controllable procedure for removing Navicula algae from drinking water using an ultrasonic-assisted electrospun method for highly efficient synthesis of Co-MOF/PVA polymeric network[J]. Applied Physics A, 2022, 128(5): 396.
|
[20] |
刘霞, 杨晓娇, 王渝佳, 等. 镧铈氧化物及其复合纳米纤维材料的除磷性能研究[J]. 中国稀土学报, 2024: 1-14. DOI11.2365. tg. 20240319.1534. 002, 2014.
|
[21] |
翟增丽, 郝林林, 李桂菊. 改性La2O3/聚丙烯纤维对饮用水中磷的吸附及控菌效果[J]. 环境工程学报, 2020, 14(2): 312-319. doi: 10.12030/j.cjee.201904066
|
[22] |
LIU J Y, WAN L H, ZHANG L, et al. Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanum-doped activated carbon fiber[J]. Journal of Colloid and Interface Science, 2011, 364(2): 490-496.
|
[23] |
QIU H, LIANG C, YU J H, et al. Preferable phosphate sequestration by nano-La(III) (hydr)oxides modified wheat straw with excellent properties in regeneration[J]. Chemical Engineering Journal, 2017, 315: 345-354.
|
[24] |
丁天琦. 基于静电纺丝制备聚丙烯腈基多孔纤维膜及其吸附性能研究[D]. 合肥: 安徽建筑大学, 2023.
|
[25] |
王锐, 谢中奎, 何亚倬, 等. FeOOH改性玄武岩纤维整体式材料对磷的去除性能及机理[J]. 环境工程学报, 2023, 17(12): 4028-4036. doi: 10.12030/j.cjee.202307009
|
[26] |
ZHOU Q, WANG X Z, LIUJ Y, et al. Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol–Gel method[J]. Chemical Engineering Journal, 2012, 200: 619-626.
|
[27] |
ZHANG L, ZHOU Q, LIU J Y, et al. Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber[J]. Chemical Engineering Journal, 2012, 185: 160-167.
|
[28] |
吴倩雯, 蒋龙进, 刘世恒, 等. 铜离子固载腈纶纤维的制备及其对水体磷酸盐的去除[J]. 环境化学, 2024, 43(5): 1743-1754. doi: 10.7524/j.issn.0254-6108.2023112003
|
[29] |
吴语潇, 杨甜, 徐武松, 等. 极性可调功能化纤维的构建及其对废水磷酸盐的去除[J]. 环境化学, 2021, 40(12): 3898-3908. doi: 10.7524/j.issn.0254-6108.2021051007
|
[30] |
徐武松. 铁—纤维复合物高效去除水体磷酸盐的研究[D]. 合肥: 安徽农业大学, 2022.
|
[31] |
何皎洁. 纤维基镧复合材料高效除磷控菌方法的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
[32] |
朱彤. 双金属有机框架及其复合材料对活性黑五和磷的吸附研究[D]. 上海: 东华大学, 2021.
|
[33] |
李铃, 莫创荣, 邓冬祝, 等. La-Fe改性蛭石对水中磷酸盐的高效去除: 吸附行为及内在机制[J]. 复合材料学报, 2024, 41(10): 5412-5422.
|
[34] |
PHAM T H, LEE K M, KIM M S, et al. La-modified ZSM-5 zeolite beads for enhancement in removal and recovery of phosphate[J]. Microporous and Mesoporous Materials, 2019, 279: 37-44. doi: 10.1016/j.micromeso.2018.12.017
|
[35] |
ZHANG B, XU L Q, ZHAO Z Y, et al. Enhanced phosphate removal by nano-lanthanum hydroxide embedded silica aerogel composites: Superior performance and insights into specific adsorption mechanism[J]. Separation and Purification Technology, 2022, 285: 120365.
|
[36] |
AI H Y, ZHANG Z Y, JI Y X, et al. La-MOFs in situ loaded Al2O3 particles for effective removal of phosphate in water: characterization, application potential analysis, and mechanism[J]. Environmental Science and Pollution Research, 2023(51): 30.
|
[37] |
WANG Y, HE Q Q, ZHAO X, et al. Synthesis of corn straw-based graphene quantum dots (GQDs) and their application in PO43− detection[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107150. doi: 10.1016/j.jece.2022.107150
|
[38] |
SHI W M, FU Y W, JIANG W, et al. Enhanced phosphate removal by zeolite loaded with Mg-Al-La ternary (hydr)oxides from aqueous solutions: Performance and mechanism[J]. Chemical Engineering Journal, 2019, 357: 33-44. doi: 10.1016/j.cej.2018.08.003
|
[39] |
JING X, WANG Y X, CHEN L, et al. Free-standing large-mesoporous silica films decorated with lanthanum as new adsorbents for efficient removal of phosphate[J]. Journal of Molecular Liquids, 2019, 296: 111815. doi: 10.1016/j.molliq.2019.111815
|
[40] |
LIU T, CHEN X, WANG X, et al. Highly effective wastewater phosphorus removal by phosphorus accumulating organism combined with magnetic sorbent MFC@La(OH)3[J]. Chemical Engineering Journal, 2018, 335: 443-449. doi: 10.1016/j.cej.2017.10.117
|
[41] |
ZHANG L, WANG Z H, XU X, et al. Insights into the phosphate adsorption behavior onto 3D self-assembled cellulose/graphene hybrid nanomaterials embedded with bimetallic hydroxides[J]. Science of the Total Environment, 2019, 653: 897-907. doi: 10.1016/j.scitotenv.2018.11.030
|
[42] |
林晓燕, 练钊华, 林璟, 等. La(OH)3/SiO2气凝胶的制备及其在净化含磷废水中的应用[J]. 化学试剂, 2024, 46(3): 39-48.
|
[43] |
XU H Y, LI H, ZHANG P, et al. The functions of exosomes targeting astrocytes and astrocyte-derived exosomes targeting other cell types[J]. Neural Regeneration Research, 2024, 19(9): 1947-1953. doi: 10.4103/1673-5374.390961
|
[44] |
KONG L C, TIAN Y, PANG Z, et al. Needle-like Mg-La bimetal oxide nanocomposites derived from periclase and lanthanum for cost-effective phosphate and fluoride removal: Characterization, performance and mechanism[J]. Chemical Engineering Journal, 2019, 382: 122963.
|
[45] |
WANG Z, SHEN D, SHEN F, et al. Phosphate adsorption on lanthanum loaded biochar[J]. Chemosphere. 2016, 150: 1-7.
|
[46] |
HE Q Q, ZHAO H J, TENG Z D. Efficient recovery of phosphate by Fe3O4/La-MOF: An insight of adsorption performance and mechanism from electrochemical properties[J]. Separation and Purification Technology, 2023, 314: 123529. doi: 10.1016/j.seppur.2023.123529
|