[1] |
AMARASIRI M, SANO D, SUZUKI S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(19): 2016-2059. doi: 10.1080/10643389.2019.1692611
|
[2] |
WANG C F, LI Y Y, LI A H, et al. Degradation of COD in antibiotic wastewater by a combination process of electrochemistry, hydroxyl-functionalized ball-milled zero-valent iron/Fe3O4 and oxone[J]. Environmental Technology, 2022, 20: 1-12.
|
[3] |
NIU J, MA Z, ZHANG Y, et al. Optimization of microwave process parameters in preparation of Ni-Fe hydrotalcite by response surface methodology and evaluation of photocatalytic degradation of antibiotic wastewater[J]. Integrated Ferroelectrics, 2022, 228(1): 192-201. doi: 10.1080/10584587.2022.2072134
|
[4] |
YANG Y, OK Y S, KIM K, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review[J]. Science of the Total Environment, 2017, 596-597: 303-320. doi: 10.1016/j.scitotenv.2017.04.102
|
[5] |
WANG L, LIU Y, MA J, et al. Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cell[J]. Water Research, 2016, 88: 322-328. doi: 10.1016/j.watres.2015.10.030
|
[6] |
WANG L, YOU L, ZHANG J, et al. Biodegradation of sulfadiazine in microbial fuel cells: reaction mechanism, biotoxicity removal and the correlation with reactor microbes[J]. Journal of Hazardous Materials, 2018, 360: 402-411. doi: 10.1016/j.jhazmat.2018.08.021
|
[7] |
AGHABABAIE M, FARHADIAN M, JEIHANIPOUR A, et al. Effective factors on the performance of microbial fuel cells in wastewater treatment–a review[J]. Environmental Technology Reviews, 2015, 4(1): 71-89. doi: 10.1080/09593330.2015.1077896
|
[8] |
ZHAO N, TREU L, ANGELIDAKI I, et al. Exoelectrogenic anaerobic granular sludge for simultaneous electricity generation and wastewater treatment[J]. Environmental Science & Technology, 2019, 53: 12130-12140.
|
[9] |
HUANG J, YANG P, GUO Y, et al. Electricity generation during wastewater treatment: An approach using an AFB-MFC for alcohol distillery wastewater[J]. Desalination, 2011, 276(1-3): 373-378. doi: 10.1016/j.desal.2011.03.077
|
[10] |
LIU S, LI L, LI H, et al. Study on ammonium and organics removal combined with electricity generation in continuous flow microbial fuel cell[J]. Bioresource Technology, 2017, 243: 1087-1096. doi: 10.1016/j.biortech.2017.07.071
|
[11] |
HAMISCH F, GIMKIEWICZ C, BOGUNOVIC B, et al. On the removal of sulfonamides using microbial bioelectrochemical systems[J]. Electrochemistry Communications, 2013, 26: 77-80. doi: 10.1016/j.elecom.2012.10.015
|
[12] |
DAN W, FSA B, FENG J, et al. Enhanced power generation in microbial fuel cell by an agonist of electroactive biofilm Sulfamethoxazole ScienceDirect[J]. Chemical Engineering Journal, 2019, 384.
|
[13] |
JIAN S, XU W, PING Y, et al. Enhanced oxytetracycline removal coupling with increased power generation using a self-sustained photo-bioelectrochemical fuel cell[J]. Chemosphere, 2019, 221: 21-29. doi: 10.1016/j.chemosphere.2018.12.152
|
[14] |
WATSON V J, LOGAN B E. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells[J]. Electrochemistry Communications, 2011, 13(1): 54-56. doi: 10.1016/j.elecom.2010.11.011
|
[15] |
KHAJEH R T, ABER S, NOFOUZI K, et al. Treatment of mixed dairy and dye wastewater in anode of microbial fuel cell with simultaneous electricity generation[J]. Environmental Science and Pollution Research, 2020, 27: 43711-43723. doi: 10.1007/s11356-020-10232-1
|
[16] |
HARTL M, BEDOYA-RIOS D, FEMANDEZ-GATELL M, et al. Contaminants removal and bacterial activity enhancement along the flow path of constructed wetland microbial fuel cells[J]. Science of the Total Environment, 2018, 652: 1195-1208.
|
[17] |
IDRIS M O, KIM H C, YAQOOB A A, et al. Exploring the effectiveness of microbial fuel cell for the degradation of organic pollutants coupled with bio-energy generation[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102183. doi: 10.1016/j.seta.2022.102183
|
[18] |
TAO R, YING G G, SU H C, et al. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China[J]. Environmental Pollution, 2010, 158(6): 2101-2109. doi: 10.1016/j.envpol.2010.03.004
|
[19] |
ZHANG Y, HU S, ZHANG H, et al. Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application[J]. Science of the Total Environment, 2017, 607-608: 1348-1356. doi: 10.1016/j.scitotenv.2017.07.083
|
[20] |
丁予涵, 胡 翔. 微生物燃料电池去除水中低含量头孢他啶研究[J]. 水处理技术, 2021, 47(4): 40-44.
|
[21] |
KIM B H, PARK H S, KIM H J, et al. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell[J]. Applied Microbiology & Biotechnology, 2004, 63(6): 672-681.
|
[22] |
林惟实, 何春华, 王传亚, 等. 餐厨发酵液强化喹啉降解和反硝化脱氮[J]. 工业水处理, 2021, 41(7): 94-99.
|
[23] |
HAN F, ZHANG M, SHANG H, et al. Microbial community succession, species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic-limited nitrate wastewater[J]. Bioresource Technology, 2020, 315: 123-126.
|
[24] |
LIU Z, NIRLS-ULRIK F, KAJETAN V, et al. Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the Phylum Chlorobi[J]. Frontiers in Microbiology, 2012, 185(3): 1-19.
|
[25] |
郑杰蓉, 汪素芳, 赵晓婵, 等. 厌氧反硝化体系对磺胺嘧啶的共代谢降解特性[J]. 科学技术与工程, 2020, 20(35): 14760-14766. doi: 10.3969/j.issn.1671-1815.2020.35.060
|
[26] |
万 辉, 易筱筠, 刘小平, 等. 施加不同电压对河涌底泥中多氯联苯还原脱氯的影响[J]. 环境工程学报, 2018, 12(2): 581-589. doi: 10.12030/j.cjee.201707180
|
[27] |
CARVALHO J, AMARAL F M, FLORENCIO L, et al. Microaerated UASB reactor treating textile wastewater: The core microbiome and removal of azo dye Direct Black 22[J]. Chemosphere, 2020, 242: 125157.1-125157.8.
|
[28] |
WANG S, ZHAO Q, JIANG J, et al. Insight into the organic matter degradation enhancement in the bioelectrochemically-assisted sludge treatment wetland: Transformation of the organic matter and microbial community evolution[J]. Chemosphere, 2022, 290: 133259. doi: 10.1016/j.chemosphere.2021.133259
|
[29] |
孙 茜. 廊道推流式生物电化学系统还原偶氮染料效能和机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
[30] |
丁飞杨. 潜流式生物滤池脱氮效能及微生物群落结构解析[D]. 西安: 西安建筑科技大学, 2018.
|
[31] |
梅晓雪. 温度与接种物对微生物燃料电池电极生物膜群落结构的影响[D]. 哈尔滨: 哈尔滨师范大学, 2015.
|
[32] |
HONGDA T, FUJITA T, TONOUCHI A. Aminivibrio pyruvatiphilus gen. nov. , sp. nov. , an anaerobic, amino-acid-degrading bacterium from soil of a Japanese rice field[J]. International journal of systematic and evolutionary microbiology, 2013, 63(Pt_10): 3679-3686.
|
[33] |
于瑞娟. BES处理尿液的影响因素及能源回收资源化研究[D]. 西安: 陕西科技大学, 2019.
|
[34] |
LOVLEY D R, UEKI T, TIAN Z, et al. Geobacter: the microbe electric's physiology, ecology, and practical applications[J]. Advances in Microbial Physiology, 2011, 59: 1-100.
|
[35] |
曹效鑫, 范明志, 梁 鹏, 等. 阳极电势对Geobacter sulfurreducens产电性能的影响[J]. 高等学校化学学报, 2009, 30(5): 983-987. doi: 10.3321/j.issn:0251-0790.2009.05.028
|
[36] |
陶虎春, 马 骉, 丁凌云, 等. 两种喹诺酮类抗生素对Geobacter sulphurreducens PCA菌的影响研究[J]. 北京大学学报(自然科学版), 2018, 54(5): 1039-1045.
|