[1] QU J, WANG H, WANG K, et al. Municipal wastewater treatment in China: development history and future perspectives[J]. Frontiers of Environmental Science & Engineering, 2019, 13(6): 88.
[2] SAGBERG P, GRUNDNES BERG K. Cost optimisation of nitrogen removal in a compact nitrogen and phosphorus WWTP[J]. Water Science and Technology, 2000, 41(9): 147-154. doi: 10.2166/wst.2000.0192
[3] SHEN Y, ZHUANG L, ZHANG J, et al. A study of ferric-carbon micro-electrolysis process to enhance nitrogen and phosphorus removal efficiency in subsurface flow constructed wetlands[J]. Chemical Engineering Journal, 2019, 359: 706-712. doi: 10.1016/j.cej.2018.11.152
[4] FENG Y, PENG Y, WANG B, et al. A continuous plug-flow anaerobic/aerobic/anoxic/aerobic (AOAO) process treating low COD/TIN domestic sewage: realization of partial nitrification and extremely advanced nitrogen removal[J]. Science of the Total Environment, 2021, 771: 145387. doi: 10.1016/j.scitotenv.2021.145387
[5] GE Z, WEI D, ZHANG J, et al. Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland: three years of pilot study[J]. Water Research, 2019, 148: 153-161. doi: 10.1016/j.watres.2018.10.037
[6] HU Y, WU G, LI R, et al. Iron sulphides mediated autotrophic denitrification: an emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment[J]. Water Research, 2020, 179: 115914. doi: 10.1016/j.watres.2020.115914
[7] XU Z, LI Y, ZHOU P, et al. New insights on simultaneous nitrate and phosphorus removal in pyrite-involved mixotrophic denitrification biofilter for a long-term operation: performance change and its underlying mechanism[J]. Science of the Total Environment, 2022, 845: 157403. doi: 10.1016/j.scitotenv.2022.157403
[8] WANG Y, WU G, ZHENG X, et al. Synergistic ammonia and nitrate removal in a novel pyrite-driven autotrophic denitrification biofilter[J]. Bioresource Technology, 2022, 355: 127223. doi: 10.1016/j.biortech.2022.127223
[9] CHEN Y, SHAO Z, KONG Z, et al. Study of pyrite based autotrophic denitrification system for low-carbon source stormwater treatment[J]. Journal of Water Process Engineering, 2020, 37: 101414. doi: 10.1016/j.jwpe.2020.101414
[10] LI R, MORRISON L, COLLINS G, et al. Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction[J]. Water Research, 2016, 96: 32-41. doi: 10.1016/j.watres.2016.03.034
[11] DU M, ZHANG Y, HUSSAIN I, et al. Effect of pyrite on enhancement of zero-valent iron corrosion for arsenic removal in water: a mechanistic study[J]. Chemosphere, 2019, 233: 744-753. doi: 10.1016/j.chemosphere.2019.05.197
[12] LIU X, XIN X, YANG W, et al. Effect mechanism of micron-scale zero-valent iron enhanced pyrite-driven denitrification biofilter for nitrogen and phosphorus removal[J]. Bioprocess and Biosystems Engineering, 2023, 46(12): 1847-1860. doi: 10.1007/s00449-023-02941-x
[13] MANZANO R, DIQUATTRO S, ROGGERO P P, et al. Addition of softwood biochar to contaminated soils decreases the mobility, leachability and bioaccesibility of potentially toxic elements[J]. Science of the Total Environment, 2020, 739: 139946. doi: 10.1016/j.scitotenv.2020.139946
[14] QIN Y, ZHU X, SU Q, et al. Enhanced removal of ammonium from water by ball-milled biochar[J]. Environmental Geochemistry and Health, 2020, 42(6): 1579-1587. doi: 10.1007/s10653-019-00474-5
[15] ASHOORI N, TEIXIDO M, SPAHR S, et al. Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff[J]. Water Research, 2019, 154: 1-11. doi: 10.1016/j.watres.2019.01.040
[16] JI B, CHEN J, MEI J, et al. Roles of biochar media and oxygen supply strategies in treatment performance, greenhouse gas emissions, and bacterial community features of subsurface-flow constructed wetlands[J]. Bioresource Technology, 2020, 302: 122890. doi: 10.1016/j.biortech.2020.122890
[17] MENG F, FENG L, YIN H, et al. Assessment of nutrient removal and microbial population dynamics in a non-aerated vertical baffled flow constructed wetland for contaminated water treatment with composite biochar addition[J]. Journal of Environmental Management, 2019, 246: 355-361.
[18] LI J, FAN J, LIU D, et al. Enhanced nitrogen removal in biochar-added surface flow constructed wetlands: dealing with seasonal variation in the north China[J]. Environmental Science and Pollution Research, 2019, 26(4): 3675-3684. doi: 10.1007/s11356-018-3895-9
[19] 王祝来, 薛琪, 林子增, 等. 固体废弃物制备陶粒的专利申请研究进展[J]. 应用化工, 2018, 47(11): 2455-2458. doi: 10.3969/j.issn.1671-3206.2018.11.037
[20] WANG H, XU J, LIU Y, et al. Preparation of ceramsite from municipal sludge and its application in water treatment: a review[J]. Journal of Environmental Management, 2021, 287: 112374. doi: 10.1016/j.jenvman.2021.112374
[21] 潘碌亭, 谢欣珏, 王九成, 等. 脱氮除磷生物滤池填料制备及其对农村生活污水的处理效果[J]. 农业工程学报, 2017, 33(9): 230-236. doi: 10.11975/j.issn.1002-6819.2017.09.030
[22] NGUYEN T T, NGO H H, GUO W, et al. Effects of sponge size and type on the performance of an up-flow sponge bioreactor in primary treated sewage effluent treatment[J]. Bioresource Technology, 2010, 101(5): 1416-1420. doi: 10.1016/j.biortech.2009.07.081
[23] 宋姿. 新型载体MBBR脱氮性能及其影响因素研究[D]. 天津城建大学, 2020.
[24] CHEN H, ZHAO X, CHENG Y, et al. Iron robustly stimulates simultaneous nitrification and denitrification under aerobic conditions[J]. Environmental Science & Technology, 2018, 52(3): 1404-1412.
[25] CHEN H, XUE G, JIANG M, et al. Advanced nitrogen removal from the biological secondary effluent of dyeing wastewater via a biological–ferric–carbon nitrification and denitrification process[J]. RSC Advances, 2016, 6(108): 106951-106959. doi: 10.1039/C6RA15130B
[26] 陈红, 谢静, 成钰莹, 等. 零价铁强化生物硝化效能及机理研究[J]. 化工学报, 2021, 72(10): 5372. doi: 10.11949/0438-1157.20210310
[27] TONG S, RODRIGUEZ-GONZALEZ L C, FENG C, et al. Comparison of particulate pyrite autotrophic denitrification (PPAD) and sulfur oxidizing denitrification (SOD) for treatment of nitrified wastewater[J]. Water Science and Technology, 2016, 75(1): 239-246.
[28] WANG Q, ROGERS M J, NG S S, et al. Fixed nitrogen removal mechanisms associated with sulfur cycling in tropical wetlands[J]. Water Research, 2021, 189: 116619. doi: 10.1016/j.watres.2020.116619
[29] ZHENG F, FANG J, GUO F, et al. Biochar based constructed wetland for secondary effluent treatment: waste resource utilization[J]. Chemical Engineering Journal, 2022, 432: 134377. doi: 10.1016/j.cej.2021.134377
[30] PENG Y, HE S, WU F. Biochemical processes mediated by iron-based materials in water treatement: enhancing nitrogen and phosphorus removal in low C/N ratio wastewater[J]. Science of the Total Environment, 2021, 775: 145137. doi: 10.1016/j.scitotenv.2021.145137
[31] XIN X, LIU S, QIN J, et al. Performances of simultaneous enhanced removal of nitrogen and phosphorus via biological aerated filter with biochar as fillers under low dissolved oxygen for digested swine wastewater treatment[J]. Bioprocess and Biosystems Engineering, 2021, 44(8): 1741-1753. doi: 10.1007/s00449-021-02557-z
[32] KIM I, CHA D K. Effect of low temperature on abiotic and biotic nitrate reduction by zero-valent iron[J]. Science of the Total Environment, 2021, 754: 142410. doi: 10.1016/j.scitotenv.2020.142410
[33] LI Q, JIANG Z, ZHENG J, et al. Interaction of pyrite with zerovalent iron with superior reductive ability via Fe(II) regeneration[J]. Environmental Science: Nano, 2022, 9(8): 2713-2725. doi: 10.1039/D2EN00349J
[34] TIAN T, ZHOU K, LI Y S, et al. Phosphorus recovery from wastewater prominently through a Fe(II)–P oxidizing pathway in the autotrophic iron-dependent denitrification process[J]. Environmental Science & Technology, 2020, 54(18): 11576-11583.
[35] WANG C, XU Y, HOU J, et al. Zero valent iron supported biological denitrification for farmland drainage treatments with low organic carbon: performance and potential mechanisms[J]. Science of the Total Environment, 2019, 689: 1044-1053. doi: 10.1016/j.scitotenv.2019.06.488
[36] TIAN T, ZHOU K, XUAN L, et al. Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge[J]. Water Research, 2020, 170: 115300. doi: 10.1016/j.watres.2019.115300
[37] ZHANG M, QIAO S, SHAO D, et al. Simultaneous nitrogen and phosphorus removal by combined anammox and denitrifying phosphorus removal process[J]. Journal of Chemical Technology and Biotechnology, 2018, 93(1): 94-104. doi: 10.1002/jctb.5326
[38] ZHOU W, LI Y, LIU X, et al. Comparison of microbial communities in different sulfur-based autotrophic denitrification reactors[J]. Applied Microbiology and Biotechnology, 2017, 101(1): 447-453. doi: 10.1007/s00253-016-7912-y
[39] RINCÓN-TOMÁS B, LANZÉN A, SÁNCHEZ P, et al. Revisiting the Mercury cycle in marine sediments: a potential multifaceted role for desulfobacterota[J]. Journal of Hazardous Materials, 2024, 465: 133120. doi: 10.1016/j.jhazmat.2023.133120
[40] MADHAIYAN M, JIN T Y, ROY J J, et al. Pleomorphomonas diazotrophica sp. nov. , an endophytic N-fixing bacterium isolated from root tissue of jatropha curcas L[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt_7): 2477-2483.
[41] PEREIRA L, SARAIVA I H, OLIVEIRA A S F, et al. Molecular structure of FoxE, the putative iron oxidase of rhodobacter ferrooxidans SW2[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2017, 1858(10): 847-853. doi: 10.1016/j.bbabio.2017.07.002
[42] SIDDIQI M Z, SOK W, CHOI G, et al. Simplicispira hankyongi sp. nov. , a novel denitrifying bacterium isolated from sludge[J]. Antonie van Leeuwenhoek, 2020, 113(3): 331-338.
[43] RAY A E, CONNON S A, NEAL A L, et al. Metal transformation by a novel pelosinus isolate from a subsurface environment[J]. Frontiers in Microbiology, 2018, 9.
[44] SHAO M F, ZHANG T, FANG H H P. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications[J]. Applied Microbiology and Biotechnology, 2010, 88(5): 1027-1042. doi: 10.1007/s00253-010-2847-1
[45] LI R, ZHANG Y, GUAN M. Investigation into pyrite autotrophic denitrification with different mineral properties[J]. Water Research, 2022, 221: 118763. doi: 10.1016/j.watres.2022.118763
[46] MIAO X, XU J, YANG B, et al. Indigenous mixotrophic aerobic denitrifiers stimulated by oxygen micro/nanobubble-loaded microporous biochar[J]. Bioresource Technology, 2024, 391: 129997. doi: 10.1016/j.biortech.2023.129997
[47] DU C, CUI C, QIU S, et al. Microbial community shift in a suspended stuffing biological reactor with pre-attached aerobic denitrifier[J]. World Journal of Microbiology and Biotechnology, 2017, 33(7): 148. doi: 10.1007/s11274-017-2288-4
[48] 钟文晶, 符帝俊, 齐丹, 等. 生物炭制备及其在水处理中的应用[J]. 水处理技术, 2023, 49(1): 26-30.
[49] 曾琳, 何月玲, 贾林春, 等. 生物炭强化污废水脱氮研究进展[J]. 东华大学学报(自然科学版), 2023, 49(4): 154-162.
[50] LIU H, CHEN Z, GUAN Y, et al. Role and application of iron in water treatment for nitrogen removal: a review[J]. Chemosphere, 2018, 204: 51-62. doi: 10.1016/j.chemosphere.2018.04.019
[51] Distinct roles of biochar and pyrite substrates in enhancing nutrient and heavy metals removal in intermittent-aerated constructed wetlands: performances and mechanism[J]. Environmental Research, 2024, 258: 119393.
[52] WANG J, LI G, YIN H, et al. Bacterial response mechanism during biofilm growth on different metal material substrates: EPS characteristics, oxidative stress and molecular regulatory network analysis[J]. Environmental Research, 2020, 185: 109451. doi: 10.1016/j.envres.2020.109451
[53] AN L, XIAO P. Zero-valent iron/activated carbon microelectrolysis to activate peroxydisulfate for efficient degradation of chlortetracycline in aqueous solution[J]. RSC Advances, 2020, 10(33): 19401-19409. doi: 10.1039/D0RA03639K
[54] XIANG W, ZHANG X, CHEN J, et al. Biochar technology in wastewater treatment: a critical review[J]. Chemosphere, 2020, 252: 126539. doi: 10.1016/j.chemosphere.2020.126539
[55] REY-MARTÍNEZ N, BADIA-FABREGAT M, GUISASOLA A, et al. Glutamate as sole carbon source for enhanced biological phosphorus removal[J]. Science of the Total Environment, 2019, 657: 1398-1408. doi: 10.1016/j.scitotenv.2018.12.064
[56] 孙翠平, 周维芝, 赵海霞. 铁强化微生物除磷的效能及机理[J]. 山东大学学报 (工学版), 2014, 45(2): 82-88.
[57] 刘凌言, 陈双荣, 宋雪燕, 等. 生物炭吸附水中磷酸盐的研究进展[J]. 环境工程, 2021, 38(11): 91-97.