[1] |
ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12): 4605-4638. doi: 10.1021/cr0206420
|
[2] |
KAMPA M, CASTANAS E. Human health effects of air pollution[J]. Environmental Pollution, 2008, 151(2): 362-367. doi: 10.1016/j.envpol.2007.06.012
|
[3] |
PELAEZ M, NOLAN N T, PILLAI S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Applied Catalysis B, 2012, 125: 331-349. doi: 10.1016/j.apcatb.2012.05.036
|
[4] |
GUO Y L, WEN M C, LI G Y, et al. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review[J]. Applied Catalysis B, 2021, 281: 119447. doi: 10.1016/j.apcatb.2020.119447
|
[5] |
REN H J, KOSHY P, CHEN W F, et al. Photocatalytic materials and technologies for air purification[J]. Journal of Hazardous Materials, 2017, 325: 340-366. doi: 10.1016/j.jhazmat.2016.08.072
|
[6] |
WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317
|
[7] |
TANG C S, CHENG M, LAI C, et al. Recent progress in the applications of non-metal modified graphitic carbon nitride in photocatalysis[J]. Coordination Chemistry Reviews, 2023, 474: 214846. doi: 10.1016/j.ccr.2022.214846
|
[8] |
LIN J, TIAN W, GUAN Z, et al. Functional carbon nitride materials in photo-Fenton-like catalysis for environmental remediation[J]. Advanced Functional Materials, 2022, 32(24): 2201743. doi: 10.1002/adfm.202201743
|
[9] |
XIA P, CAO S, ZHU B, et al. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angewandte Chemie-International Edition, 2020, 59(13): 5218-5225. doi: 10.1002/anie.201916012
|
[10] |
LIAO G, GONG Y, ZHANG L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy & Environmental Science, 2019, 12(7): 2080-2147.
|
[11] |
XIAO Y, TIAN G, LI W, et al. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis[J]. Journal of the American Chemical Society, 2019, 141(6): 2508-2515. doi: 10.1021/jacs.8b12428
|
[12] |
ZHAO D, DONG C, BIN W, et al. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution[J]. Advanced Materials, 2019, 31(43): 1903545. doi: 10.1002/adma.201903545
|
[13] |
LINIC S, CHRISTOPHER P, INGRAM D. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Materials, 2011, 10(12): 911-921. doi: 10.1038/nmat3151
|
[14] |
LI S, MIAO P, ZHANG Y, et al. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis[J]. Advanced Materials, 2021, 33(6): 2000086. doi: 10.1002/adma.202000086
|
[15] |
KUMAR A, CHOUDHARY P, KUMAR A, et al. Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis[J]. Small, 2022, 18(1): 2101638. doi: 10.1002/smll.202101638
|
[16] |
LIU X, HAO Z, WANG H, et al. Enhanced localized dipole of Pt-Au single-site catalyst for solar water splitting[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(8): e2119723119.
|
[17] |
BABU P, DASH S, PARIDA K. Mechanistic insight the visible light driven hydrogen generation by plasmonic Au-Cu alloy mounted on TiO2@B-doped g-C3N4 heterojunction photocatalyst[J]. Journal of Alloys and Compounds, 2022, 909: 164754. doi: 10.1016/j.jallcom.2022.164754
|
[18] |
SU H, LIU M, CHENG W, et al. Heterogeneous single-site synergetic catalysis for spontaneous photocatalytic overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7(18): 11170-11176. doi: 10.1039/C9TA01925A
|
[19] |
CHEN J, LI Y, HUANG L, et al. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process[J]. Carbon, 2015, 81: 826-834. doi: 10.1016/j.carbon.2014.10.033
|
[20] |
赵美花, 陈春连, 蒋芃, 等. Z型g-C3N4/WO3复合材料光催化降解土霉素[J]. 环境工程学报, 2023, 17(9): 2921-2927. doi: 10.12030/j.cjee.202304016
|
[21] |
NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Materials, 2012, 22(22): 4763-4770.
|
[22] |
LIU X, HAO Z, WANG H, et al. Enhanced localized dipole of Pt-Au single-site catalyst for solar water splitting[J]. PNAS, 2022, 119(8): e2119723119. doi: 10.1073/pnas.2119723119
|
[23] |
MASLANA K, KALENCZUK R, ZIELINSKA B, et al. Synthesis and characterization of nitrogen-doped carbon nanotubes derived from g-C3N4[J]. Materials, 2023, 13: 1349.
|
[24] |
WU X, ZHONG W, MA H, et al. Ultra-small molybdenum sulfide nanodot-coupled graphitic carbon nitride nanosheets: trifunctional ammonium tetrathiomolybdate-assisted synthesis and high photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science, 2021, 586: 719-729. doi: 10.1016/j.jcis.2020.10.141
|
[25] |
XIAO X, GAO Y, ZHANG L, et al. A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis[J]. Advanced Materials, 2020, 32(33): 2003082. doi: 10.1002/adma.202003082
|
[26] |
AKSOY M, KORKUT S, METIN O. AuPt alloy nanoparticles supported on graphitic carbon nitride: in situ synthesis and superb catalytic performance in the light-assisted hydrolytic dehydrogenation of ammonia borane[J]. Applied Surface Science, 2022, 602: 154286. doi: 10.1016/j.apsusc.2022.154286
|
[27] |
ZHANG X, XIE X, WANG H, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J]. Journal of the American Chemical Society, 2013, 135(1): 18-21. doi: 10.1021/ja308249k
|
[28] |
LIU Z, HOU W, PAVASKAR P, et al. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination[J]. Nano Letters, 2011, 11(3): 1111-1116. doi: 10.1021/nl104005n
|
[29] |
TIAN Y, TATSUMA T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles[J]. Journal of the American Chemical Society, 2005, 127(20): 7632-7637. doi: 10.1021/ja042192u
|
[30] |
RAZIQ F, HE J, GAN J, et al. Promoting visible-light photocatalytic activities for carbon nitride based 0D/2D/2D hybrid system: beyond the conventional 4-elctron mechanism[J]. Applied Catalysis B, 2020, 270: 118870. doi: 10.1016/j.apcatb.2020.118870
|
[31] |
TIAN X, SUN Y, HE J, et al. Surface P atom grafting of g-C3N4 for improved local spatial charge separation and enhanced photocatalytic H2 production[J]. Journal of Materials Chemistry A, 2019, 7(13): 7628-7635. doi: 10.1039/C9TA00129H
|
[32] |
LI S, CAI M, WANG C, et al. Ta3N5/CdS core-shell S-scheme heterojunction nanofibers for efficient photocatalytic removal of antibiotic tetracycline and Cr(VI): performance and mechanism insights[J]. Advanced Fiber Materials, 2023, 5: 994-1007. doi: 10.1007/s42765-022-00253-5
|
[33] |
ZHANG C, HE H, TANAKA K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature[J]. Applied Catalysis B, 2006, 65(1-2): 37-43. doi: 10.1016/j.apcatb.2005.12.010
|
[34] |
RAO X, DOU H, LONG D, et al. Ag3PO4/g-C3N4 nanocomposites for photocatalytic degradation gas phase formaldehyde at continuous flow under 420 nm LED irradiation[J]. Chemosphere, 2020, 244: 125462. doi: 10.1016/j.chemosphere.2019.125462
|
[35] |
CHEN Z, ZHANG X, XU K, et al. Facile fabrication of nanocellulose-supported membrane composited with modified carbon nitride and HKUST-1 for efficient photocatalytic degradation of formaldehyde[J]. International Journal of Biological Macromolecules, 2024, 268: 131937. doi: 10.1016/j.ijbiomac.2024.131937
|
[36] |
KONG L, LI X, SONG P, et al. Porous graphitic carbon nitride nanosheets for photocatalytic degradation of formaldehyde gas[J]. Chemical Physics Letters, 2021, 762: 138132. doi: 10.1016/j.cplett.2020.138132
|
[37] |
LIU S, LIN W. A simple method to prepare g-C3N4-TiO2/waste zeolites as visible-light-responsive photocatalytic coatings for degradation of indoor formaldehyde[J]. Journal of Hazardous Materials, 2019, 368: 468-476. doi: 10.1016/j.jhazmat.2019.01.082
|
[38] |
ZHENG M, LIN Y, LIU S. TiO2@g-C3N4@SiO2 with superior visible-light degradation of formaldehyde for indoor humidity control coatings[J]. Materials Today Sustainability, 2023, 24: 100496. doi: 10.1016/j.mtsust.2023.100496
|
[39] |
刘权锋, 彭炜东, 钟乘韡, 等. g-C3N4-Ag/SiO2复合材料光催化降解甲醛的应用[J]. 复合材料学报, 2022, 39(2): 628-636.
|
[40] |
WANG Z, HUANG Z, YU J, et al. Growth of Ag/g-C3N4 nanocomposites on nickel foam to enhance photocatalytic degradation of formaldehyde under visible light[J]. Journal of Environmental Sciences, 2024, 137: 432-442. doi: 10.1016/j.jes.2023.02.003
|
[41] |
YU J, WANG S, LOW J, et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics, 2013, 15(39): 16883-16890. doi: 10.1039/c3cp53131g
|
[42] |
彭江伟, 江卓婷, 姜奎兵, 等. Z-机制g-C3N4/Bi/BiOBr异质结光催化剂制备及其可见光降解甲醛气体研究[J]. 分子催化, 2023, 37(1): 53-62.
|
[43] |
LIU M, XUE X, YU S, et al. Improving Photocatalytic Performance from Bi2WO6@MoS2/graphene Hybrids via Gradual Charge Transferred Pathway[J]. Scientific Reports, 2017, 7: 3637. doi: 10.1038/s41598-017-03911-6
|
[44] |
HOU F, LU K, LIU F, et al. Manipulating a TiO2-graphene-Ta3N5 heterojunction for efficient Z-scheme photocatalytic pure water splitting[J]. Materials Research Bulletin, 2022, 150: 111782. doi: 10.1016/j.materresbull.2022.111782
|
[45] |
LI L, WANG X, GU H, et al. Which is more efficient in promoting the photocatalytic H2 evolution performance of g-C3N4: monometallic nanocrystal, heterostructural nanocrystal, or bimetallic nanocrystal?[J]. Inorganic Chemistry, 2022, 61(11): 4760-4768. doi: 10.1021/acs.inorgchem.2c00171
|
[46] |
TSAO C, NARRA S, KAO J, et al. Dual-plasmonic Au@Cu7S4 yolk@shell nanocrystals for photocatalytic hydrogen production across visible to near infrared spectral region[J]. Nature Communications, 2024, 15(1): 413. doi: 10.1038/s41467-023-44664-3
|