[1] |
ZHANG R Y, WANG G H, GUO S, et al. Formation of urban fine particulate matter[J]. Chemical Reviews, 2015, 115(10): 3803-3855. doi: 10.1021/acs.chemrev.5b00067
|
[2] |
KATRE H K , BERTIL F , JOHAN S N . Increase in sick leave episodes from short-term fine particulate matter exposure: A case-crossover study in stockholm, sweden[J]. Environmental Research, 2024, 244117950-.
|
[3] |
李琪琪, 邓瑾璇, 李光华, 等. 关中城市群二次PM2.5与O3协同影响特征分析[J]. 环境科学学报, 2024, 44(01): 62-73.
|
[4] |
XU H F, CHEN L H, CHEN J S, et al. Unexpected rise of atmospheric secondary aerosols from biomass burning during the COVID-19 lockdown period in Hangzhou, China[J]. Atmospheric Environment, 2022, 278: 119076-119076. doi: 10.1016/j.atmosenv.2022.119076
|
[5] |
CHEN Y. Characterization, mixing state, and evolution of urban single particles in Xi'an (China) during wintertime haze days[J]. Science of the Total Environment, 2016, 573: 937-945. doi: 10.1016/j.scitotenv.2016.08.151
|
[6] |
周静博, 任毅斌, 洪纲, 等. 利用SPAMS研究石家庄市冬季连续灰霾天气的污染特征及成因[J]. 环境科学, 2015, 36(11): 3972-3980.
|
[7] |
ZHANG G, BI X, LI L, et al. Mixing state of individual submicron carbon-containing particles during spring and fall seasons in urban Guangzhou, China: A case study[J]. Atmospheric Chemistry and Physics, 2013, 13(9): 4723-4735. doi: 10.5194/acp-13-4723-2013
|
[8] |
SU B J, ZHANG G H, ZHUO Z M, et al. Different characteristics of individual particles from light-duty diesel vehicle at the launching and idling state by AAC-SPAMS[J]. Journal of Hazardous Materials, 2021, 418(15): 126304.1-126304.9.
|
[9] |
LI K N. Source apportionment of ambient aerosols during a winter pollution episode in yinchuan by using single-particle mass spectrometry[J]. Atmosphere, 2022, 13(8): 1174-1174. doi: 10.3390/atmos13081174
|
[10] |
SONG Y, ZHANG Y H, XIE S D, et al. Source apportionment of PM2.5 in Beijing by positive matrix factorization[J]. Atmospheric Environment, 2006, 40: 1526-1537. doi: 10.1016/j.atmosenv.2005.10.039
|
[11] |
CHEN W W, ZHANG M D, LIU W, et al. Real-Time source apportionment of PM2.5 highlights the importance of joint controls on atmospheric pollution in cold region of China[J]. Remote Sensing, 2022, 14(15): 3770-3770. doi: 10.3390/rs14153770
|
[12] |
闫世明, 王雁, 郭伟, 等. 太原市秋冬季大气污染特征和输送路径及潜在源区分析[J]. 环境科学, 2019, 40(11): 4801-4809.
|
[13] |
杨燕萍, 陈强, 王莉娜, 等. 西北工业城市冬季PM2.5污染特征及理化性质[J]. 环境科学, 2020, 41(12): 5267-75.
|
[14] |
WANG Z Q, LIU J J. Spring-time PM2.5 elemental analysis and polycyclic aromatic hydrocarbons measurement in high-rise residential buildings in Chongqing and Xian, China[J]. Energy and Buildings, 2018, 173: 623-633. doi: 10.1016/j.enbuild.2018.06.003
|
[15] |
闫璐璐, 刘焕武, 黄学敏, 等. 利用SPAMS研究西安市重污染天气细颗粒物污染特征及来源[J]. 环境科学研究, 2018, 31(11): 1841-1848.
|
[16] |
YANG F, TAN J, ZHAO Q, et al. Characteristics of PM2.5 speciation in representative megacities and across China[J]. Atmospheric Chemistry and Physics, 2011, 11(11): 5207-5219. doi: 10.5194/acp-11-5207-2011
|
[17] |
KE L, LIU W, WANG Y, et al. Comparison of PM2.5 source apportionment using positive matrix factorization and molecular marker-based chemical mass balance[J]. Science of the total environment, 2008, 394: 290-302. doi: 10.1016/j.scitotenv.2008.01.030
|
[18] |
HEALY R M, SCIARE J, POULAIN L, et al. Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris[J]. Atmospheric Chemistry and Physics, 2012, 12(4): 1681-1700. doi: 10.5194/acp-12-1681-2012
|
[19] |
CHEN L Y, ZHANG J K, HUANG X J, et al. Characteristics and pollution formation mechanism of atmospheric fine particles in the megacity of Chengdu, China[J]. Atmospheric Research, 2022, 273: 106172. doi: 10.1016/j.atmosres.2022.106172
|
[20] |
马乾坤, 成春雷, 李梅, 等. 鹤山气溶胶光学性质和单颗粒化学组分的研究[J]. 中国环境科学, 2019, 39(7): 2710-2720.
|
[21] |
ZHANG G, BI X, CHAN L Y, et al. Size-segregated chemical characteristics of aerosol during haze in an urban area of the Pearl River Delta region, China[J]. Urban Climate, 2013, 4: 74-84. doi: 10.1016/j.uclim.2013.05.002
|
[22] |
SPENCER M T, PRATHER K A. Using ATOFMS to Determine OC/EC Mass Fractions in Particles[J]. Aerosol Science and Technology, 2006, 40(8): 585-594. doi: 10.1080/02786820600729138
|
[23] |
曹力媛. 基于SPAMS的太原市典型生活区停暖前后PM2.5来源及组成[J]. 环境科学研究, 2017, 30(10): 1524-1532.
|
[24] |
蒋斌, 陈多宏, 王伯光, 等. 鹤山大气超级站旱季单颗粒气溶胶化学特征研究[J]. 中国环境科学, 2016, 36(3): 670-678.
|
[25] |
LUO J Q, HUANG X J, ZHANG J K, et al. Characterization of aerosol particles during the most polluted season (winter) in urban Chengdu (China) by single-particle analysis[J]. Environmental science and pollution research international, 2019, 26(17): 17685-17695. doi: 10.1007/s11356-019-05156-4
|
[26] |
温杰, 史旭荣, 田瑛泽, 等. 利用SPAMS研究天津市夏季环境空气中细颗粒物化学组成特征[J]. 环境科学, 2018, 39(8): 3492-3501.
|
[27] |
卞逸舒, 银燕, 王红磊, 等. 黄山秋季大气颗粒物理化特性[J]. 环境科学, 2020, 41(3): 1056-1066.
|
[28] |
DENG W, FANG Z, WANG Z Y, et al. Primary emissions and secondary organic aerosol formation from in-use diesel vehicle exhaust: Comparison between idling and cruise mode[J]. Science of the Total Environment, 2020, 699: 134357. doi: 10.1016/j.scitotenv.2019.134357
|
[29] |
曹宁, 黄学敏, 祝颖, 等. 西安冬季重污染过程PM2.5理化特征及来源解析[J]. 中国环境科学, 2019, 39(1): 32-39. doi: 10.3969/j.issn.1000-6923.2019.01.004
|
[30] |
LI L, LI M, HUANG Z, et al. Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing[J]. Atmospheric Environment, 2014, 94: 323-331. doi: 10.1016/j.atmosenv.2014.03.048
|
[31] |
LIU L, WANG Y, DU S, et al. Characteristics of atmospheric single particles during haze periods in a typical urban area of Beijing: A case study in october, 2014[J]. Journal of Environmental Sciences, 2016, 40: 145-153. doi: 10.1016/j.jes.2015.10.027
|
[32] |
谢瑞加, 侯红霞, 陈永山. 烟花爆竹集中燃放的大气细颗粒物(PM2.5)成分图谱[J]. 环境科学, 2018, 39(4): 1484-1492.
|