[1] |
CORDELL D, WHITE S. Tracking phosphorus security: Indicators of phosphorus vulnerability in the global food system[J]. Food Security, 2015, 7(2): 337-350. doi: 10.1007/s12571-015-0442-0
|
[2] |
LI R H, LI X Y. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation[J]. Bioresource Technology, 2017, 245: 615-624. doi: 10.1016/j.biortech.2017.08.199
|
[3] |
HE Z W, LIU W Z, WANG L, et al. Clarification of phosphorus fractions and phosphorus release enhancement mechanism related to pH during waste activated sludge treatment[J]. Bioresource Technology, 2016, 222: 217-225. doi: 10.1016/j.biortech.2016.10.010
|
[4] |
YU B H, LUO J H, XIE H H, et al. Species, fractions, and characterization of phosphorus in sewage sludge: A critical review from the perspective of recovery[J]. Science of the Total Environment, 2021, 786: 147437. doi: 10.1016/j.scitotenv.2021.147437
|
[5] |
LIN H, WANG Y l, DONG Y B. A review of methods, influencing factors and mechanisms for phosphorus recovery from sewage and sludge from municipal wastewater treatment plants[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111657. doi: 10.1016/j.jece.2023.111657
|
[6] |
廖靖莹, 胡玉娜, 李多坤, 等. 剩余污泥中磷释放技术研究进展[J]. 人民珠江, 2023, 44(6): 108-115. doi: 10.3969/j.issn.1001-9235.2023.06.015
|
[7] |
宜慧, 韩芸, 李玉友, 等. 碱解+低温水热预处理改善剩余污泥中温厌氧消化性能工艺[J]. 环境工程学报, 2014, 8(9): 3927-3932.
|
[8] |
许德超, 周礼杰, 尹魁浩, 等. 低温热碱破解低有机质污泥及磷形态分析[J]. 环境工程学报, 2017, 11(10): 5621-5629. doi: 10.12030/j.cjee.201611180
|
[9] |
邓红苹. 污泥热水解及焚烧过程中磷的迁移转化和浸出回收研究[D]. 武汉: 华中科技大学, 2022.
|
[10] |
宋明阳, 李敏, 袁溪, 等. 污水处理厂污泥磷形态及低温热解-碱解联合处理的释磷效果研究[J]. 环境工程, 2018, 36(1): 112-117.
|
[11] |
XU X F, XU Q Y, DU Z X, et al. Enhanced phosphorus release from waste activated sludge using ascorbic acid reduction and acid dissolution[J]. Water Research, 2023, 229: 119476. doi: 10.1016/j.watres.2022.119476
|
[12] |
ZHAO L N, LIU L M, LIU X P, et al. Efficient phosphorus recovery from waste activated sludge: Pretreatment with natural deep eutectic solvent and recovery as vivianite[J]. Water Research, 2024, 263: 122161. doi: 10.1016/j.watres.2024.122161
|
[13] |
徐志嫱, 李瑶, 周爱朝, 等. 污泥热水解过程中磷的释放规律与影响因素[J]. 中国给水排水, 2018, 34(21): 24-30.
|
[14] |
PEREZ C, BOILY J F, SKOGLUND N, et al. Phosphorus release from hydrothermally carbonized digested sewage sludge using organic acids[J]. Waste Management, 2022, 151: 60-69. doi: 10.1016/j.wasman.2022.07.023
|
[15] |
YANG Y, RATTÉ D, SMETS B F, et al. Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption[J]. Chemosphere, 2001, 43(8): 1013-1021. doi: 10.1016/S0045-6535(00)00498-7
|
[16] |
DONG Y C, WANG J J, LIU P F. Dyeing and finishing of cotton fabric in a single bath with reactive dyes and citric acid[J]. Coloration Technology, 2001, 117(5): 262-265. doi: 10.1111/j.1478-4408.2001.tb00072.x
|
[17] |
SOCCOL C R, VANDENBERGHE L P S, RODRIGUES C, et al. New perspectives for citric acid production and application[J]. Food Technology and Biotechnology, 2006, 44(2): 141-149.
|
[18] |
李长玉. 基于蓝铁矿结晶法的污水及污泥中磷回收技术研究[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所), 2022.
|
[19] |
刘怡心, 夏琼霞, 李卫华. 从污泥中回收蓝铁矿的研究进展[J]. 环境科学与技术, 2023, 46(9): 129-137.
|
[20] |
HU S G, YI K X, LI C, et al. Efficient and selective recovery of iron phosphate from the leachate of incinerated sewage sludge ash by thermally induced precipitation[J]. Water Research, 2023, 238: 120024. doi: 10.1016/j.watres.2023.120024
|
[21] |
LIU Z G, ZHOU S Q, DAI L L, et al. The transformation of phosphorus fractions in high-solid sludge by anaerobic digestion combined with the high temperature thermal hydrolysis process[J]. Bioresource Technology, 2020, 309: 123314. doi: 10.1016/j.biortech.2020.123314
|
[22] |
ZHANG H L, FANG W, WANG Y P, et al. Species of phosphorus in the extracellular polymeric substances of EBPR sludge[J]. Bioresource Technology, 2013, 142: 714-718. doi: 10.1016/j.biortech.2013.05.068
|
[23] |
RUTTENBERG K. Development of a sequential extraction method for different forms of phosphorus in marine-sediments[J]. Limnology and Oceanography, 1992, 37(7): 1460-1482. doi: 10.4319/lo.1992.37.7.1460
|
[24] |
KOVAR J L, PIERZYNSKI G M. Methods of phosphorus analysis for soils, sediments, residuals, and waters second edition[J]. Southern Cooperative Series Bulletin, 2009, 408-419.
|
[25] |
GU S, QIAN Y G, JIAO Y, et al. An innovative approach for sequential extraction of phosphorus in sediments: ferrous iron P as an independent P fraction[J]. Water Research, 2016, 103: 352-361. doi: 10.1016/j.watres.2016.07.058
|
[26] |
叶嘉洲. 蓝铁矿形成与分离试验研究[D]. 北京: 北京建筑大学, 2020.
|
[27] |
周思琦, 戴晓虎, 戴翎翎, 等. 高温热水解对高含固污泥中磷的形态转化影响[J]. 中国环境科学, 2018, 38(4): 1391-1396. doi: 10.3969/j.issn.1000-6923.2018.04.023
|
[28] |
GONG M, CHU H Y, FENG J W, et al. Regulating the distribution of phosphorus in sewage sludge hydrothermal carbonization products by complexation pretreatment[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 111921. doi: 10.1016/j.jece.2024.111921
|
[29] |
周顺, 徐迎波, 王程辉, 等. 柠檬酸的热解特性[J]. 烟草科技, 2011(9): 45-49. doi: 10.3969/j.issn.1002-0861.2011.09.011
|
[30] |
傅杰. 高温液态水中的脱羧反应[D]. 杭州: 浙江大学, 2012.
|
[31] |
郭智俐, 李苓, 刘晓月, 等. 两种铁氧化物对无机磷的吸附特征分析[J]. 中国海洋大学学报(自然科学版), 2021, 51(8): 42-48.
|
[32] |
郁娜. 城市污水处理厂污水磷的化学沉淀特性及影响因素研究[D]. 西安: 西安建筑科技大学, 2016.
|
[33] |
ZHANG M Y, KUBA T. Inhibitory effect of metal ions on the poly-phosphate release from sewage sludge during thermal treatment[J]. Environmental Technology, 2014, 35(9): 1157-1164. doi: 10.1080/09593330.2013.863980
|
[34] |
李瑶. EDTA对低温热水解污泥鸟粪石回收效率和纯度的影响研究[D]. 西安: 西安理工大学, 2019.
|
[35] |
DU Z X, LIU D Y, LI H Y, et al. Recovery of iron phosphate from secondary sludge by ascorbic and citric acids[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111917. doi: 10.1016/j.jece.2024.111917
|
[36] |
张晓, 宋旭俊, 施辉献. 氢氧化铝盐酸溶解性能研究及探讨[J]. 云南冶金, 2021, 50(3): 71-75. doi: 10.3969/j.issn.1006-0308.2021.03.015
|
[37] |
刘源, 徐仁扣. 低分子量有机化合物对MnO2和土壤氧化锰的还原溶解作用[J]. 环境化学, 2015, 34(6): 1037-1042. doi: 10.7524/j.issn.0254-6108.2015.06.2014111201
|
[38] |
PING Q, LU X, LI Y M, et al. Effect of complexing agents on phosphorus release from chemical-enhanced phosphorus removal sludge during anaerobic fermentation[J]. Bioresource Technology, 2020, 301: 122745. doi: 10.1016/j.biortech.2020.122745
|
[39] |
CADE-MENUN B J. Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy[J]. Talanta, 2005, 66(2): 359-371. doi: 10.1016/j.talanta.2004.12.024
|
[40] |
LI M, TANG Y Y, LU X Y, et al. Phosphorus speciation in sewage sludge and the sludge-derived biochar by a combination of experimental methods and theoretical simulation[J]. Water Research, 2018, 140: 90-99. doi: 10.1016/j.watres.2018.04.039
|
[41] |
HAN X M, WANG F, ZHOU B H, et al. Phosphorus complexation of sewage sludge during thermal hydrolysis with different reaction temperature and reaction time by P K-edge XANES and 31P NMR[J]. Science of the Total Environment, 2019, 688: 1-9. doi: 10.1016/j.scitotenv.2019.06.017
|
[42] |
HUANG R X, TANG Y Z. Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge[J]. Environmental Science & Technology, 2015, 49(24): 14466-14474.
|
[43] |
ZHANG H L, FANG W, WAN Y P, et al. Phosphorus removal in an enhanced biological phosphorus removal process: Roles of extracellular polymeric substances[J]. Environmental Science & Technology, 2013, 47(20): 11482-11489.
|
[44] |
BAHGAT N T, WILFERT P, EUSTACE S J, et al. Phosphorous speciation in EPS extracted from aerobic granular sludge[J]. Water Research, 2024, 262: 122077. doi: 10.1016/j.watres.2024.122077
|
[45] |
李斌德, 王碧侠, 袁文龙, 等. 钛白副产硫酸亚铁制备电池级磷酸铁[J]. 化工进展, 2024, 43(8): 4523-4533.
|
[46] |
赵曼, 肖仁贵, 廖霞, 等. 水热法以磷铁制备电池级磷酸铁的研究[J]. 材料导报, 2017, 31(10): 25-31. doi: 10.11896/j.issn.1005-023X.2017.010.006
|