[1] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559
[2] 刘芃岩, 孙启智, 刘璐, 等. 微塑料环境赋存及其与有机污染物的作用机理研究进展[J]. 中国科学: 化学, 2021, 51(9): 1206-1216. doi: 10.1360/SSC-2021-0139 LIU P Y, SUN Q Z, LIU L, et al. Research progress on environmental occurrence of microplastics and their interaction mechanism with organic pollutants[J]. Scientia Sinica Chimica), 2021, 51(9): 1206-1216(in Chinese). doi: 10.1360/SSC-2021-0139
[3] LIU S S, QIU Y, HE Z Q, et al. Microplastic-derived dissolved organic matter and its biogeochemical behaviors in aquatic environments: A review[J]. Critical Reviews in Environmental Science and Technology, 2024, 54(11): 865-882. doi: 10.1080/10643389.2024.2303294
[4] LIU H, ZHANG X, KARANFIL T, et al. Insight into the chemical transformation and organic release of polyurethane microplastics during chlorination[J]. Environmental Pollution, 2024, 341: 122976. doi: 10.1016/j.envpol.2023.122976
[5] LEE Y K, HONG S, HUR J. Copper-binding properties of microplastic-derived dissolved organic matter revealed by fluorescence spectroscopy and two-dimensional correlation spectroscopy[J]. Water Research, 2021, 190: 116775. doi: 10.1016/j.watres.2020.116775
[6] YAN C X, WANG X, NIE M H, et al. Characteristics of microplastic-derived dissolved organic matter and its binding with pharmaceuticals unveiled by fluorescence spectroscopy and two-dimensional correlation spectroscopy[J]. Science of the Total Environment, 2024, 908: 168190. doi: 10.1016/j.scitotenv.2023.168190
[7] 袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 2016, 22(5): 1402-1417. doi: 10.11674/zwyf.14539 YUAN S, ZHAO L X, MENG H B, et al. The main types of biochar and their properties and expectative researches[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(5): 1402-1417(in Chinese). doi: 10.11674/zwyf.14539
[8] 张娟香, 李慧娟, 李发永, 等. 不同来源生物炭对盐渍土吸附铜离子的影响[J]. 环境化学, 2025, 44(2): 1-11. ZHANG J X, LI H J, LI F, et al. Effects of biochar from different sources on the adsorption of Cu2+ in saline soil[J]. Environmental Chemistry, 2025, 44(2): 1-11(in Chinese).
[9] MURTAZA G, AHMED Z, VALIPOUR M, et al. Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants[J]. Scientific Reports, 2024, 14(1): 217. doi: 10.1038/s41598-023-50623-1
[10] CHEN W H, YU Z G, YANG X, et al. Unveiling the role of dissolved organic matter on the Hg phytoavailability in biochar-amended soils[J]. International Journal of Environmental Research and Public Health, 2023, 20(4): 3761. doi: 10.3390/ijerph20043761
[11] 刘赟, 聂明华, 晏彩霞, 等. 湿地植物生物炭衍生DOM与氯霉素的络合机制[J]. 环境科学学报, 2022, 42(9): 102-112. LIU Y, NIE M H, YAN C X, et al. Complexation of chloramphenicol and dissolved organic matter derived from the wetland plant biochar[J]. Acta Scientiae Circumstantiae, 2022, 42(9): 102-112(in Chinese).
[12] LI X N, JIANG X, SONG Y, et al. Coexistence of polyethylene microplastics and biochar increases ammonium sorption in an aqueous solution[J]. Journal of Hazardous Materials, 2021, 405: 124260. doi: 10.1016/j.jhazmat.2020.124260
[13] GUO X Y, WANG X L, ZHOU X Z, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition[J]. Environmental Science & Technology, 2012, 46(13): 7252-7259.
[14] JAHNKE A, ARP H P H, ESCHER B I, et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment[J]. Environmental Science & Technology Letters, 2017, 4(3): 85-90.
[15] SONG Y K, HONG S H, JANG M, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type[J]. Environmental Science & Technology, 2017, 51(8): 4368-4376.
[16] 马思睿, 李舒行, 郭学涛. 微塑料的老化特性、机制及其对污染物吸附影响的研究进展[J]. 中国环境科学, 2020, 40(9): 3992-4003. doi: 10.3969/j.issn.1000-6923.2020.09.032 MA S R, LI S X, GUO X T. A review on aging characteristics, mechanism of microplastics and their effects on the adsorption behaviors of pollutants[J]. China Environmental Science, 2020, 40(9): 3992-4003(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.09.032
[17] YANG H L, YE S J, WANG H, et al. Insight into disinfection byproduct formation potential of aged biochar and its effects during chlorination[J]. Journal of Environmental Management, 2022, 317: 115437. doi: 10.1016/j.jenvman.2022.115437
[18] YAO S, NI N, LI X N, et al. Interactions between white and black carbon in water: A case study of concurrent aging of microplastics and biochar[J]. Water Research, 2023, 238: 120006. doi: 10.1016/j.watres.2023.120006
[19] LYU H H, ZHANG H, DONG J R, et al. Pyrolysis temperature matters: Biochar-derived dissolved organic matter modulates aging behavior and biotoxicity of microplastics[J]. Water Research, 2024, 250: 121064. doi: 10.1016/j.watres.2023.121064
[20] GUO S S, LYU H H, LIU W T, et al. Self-motivated photoaging of microplastics by biochar-dissolved organic matter under different pyrolysis temperatures[J]. Science of the Total Environment, 2024, 915: 170043. doi: 10.1016/j.scitotenv.2024.170043
[21] 何杰, 李学艳, 林欣, 等. 光谱特征法辨识不同污染景观河道中溶解性有机物的组分与来源[J]. 环境科学学报, 2021, 41(3): 1000-1010. HE J, LI X Y, LIN X, et al. Spectral feature method was used to identify the components and sources of dissolved organic matter in different polluted landscape channels[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 1000-1010(in Chinese).
[22] YAN C X, LIU H H, SHENG Y R, et al. Fluorescence characterization of fractionated dissolved organic matter in the five tributaries of Poyang Lake, China[J]. Science of the Total Environment, 2018, 637: 1311-1320.
[23] 王筱, 晏彩霞, 聂明华, 等. 紫外老化微塑料衍生DOM理化特性及其与磺胺嘧啶、铜的络合机制[J]. 环境科学, 2023, 44(11): 6159-6171. WANG X, YAN C X, NIE M H, et al. Characteristics of microplastic-derived dissolved organic matter(MPDOM) and the complexation between MPDOM and sulfadiazine/Cu2+[J]. Environmental Science, 2023, 44(11): 6159-6171(in Chinese).
[24] LAWAETZ A J, STEDMON C A. Fluorescence intensity calibration using the Raman scatter peak of water[J]. Applied Spectroscopy, 2009, 63(8): 936-940. doi: 10.1366/000370209788964548
[25] ZEPP R G, SHELDON W M, MORAN M A. Dissolved organic fluorophores in southeastern US coastal waters: Correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices[J]. Marine Chemistry, 2004, 89(1/2/3/4): 15-36.
[26] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography: Methods, 2008, 6(11): 572-579. doi: 10.4319/lom.2008.6.572
[27] McKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38-48. doi: 10.4319/lo.2001.46.1.0038
[28] JAFFÉ R, BOYER J N, LU X, et al. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis[J]. Marine Chemistry, 2004, 84(3/4): 195-210.
[29] HUANG X, YAN C X, NIE M H, et al. Effect of colloidal fluorescence properties on the complexation of chloramphenicol and carbamazepine to the natural aquatic colloids[J]. Chemosphere, 2022, 286: 131604. doi: 10.1016/j.chemosphere.2021.131604
[30] YAN C X, SHENG Y R, JU M, et al. Relationship between the characterization of natural colloids and metal elements in surface waters[J]. Environmental Science and Pollution Research, 2020, 27(25): 31872-31883. doi: 10.1007/s11356-020-09500-x
[31] 韦思业, 范行程, 毛翰, 等. 生物炭溶解性有机质中不同分子量组分的分布及光谱特性[J]. 光谱学与光谱分析, 2022, 42(6): 1809-1815. WEI S Y, FAN X C, MAO H, et al. Abundance and spectral characteristics of molecular weight separated dissolved organic matter released from biochar at different pyrolysis temperatures[J]. Spectroscopy and Spectral Analysis, 2022, 42(6): 1809-1815(in Chinese).
[32] 罗燕清, 万智巍, 晏彩霞, 等. 鄱阳湖沉积物溶解性有机质光谱特征[J]. 环境科学, 2022, 43(2): 847-858. LUO Y Q, WAN Z W, YAN C X, et al. Spectral characteristics of dissolved organic matter in sediments from Poyang Lake[J]. Environmental Science, 2022, 43(2): 847-858(in Chinese).
[33] AMELOOT N, GRABER E R, VERHEIJEN F G A, et al. Interactions between biochar stability and soil organisms: Review and research needs[J]. European Journal of Soil Science, 2013, 64(4): 379-390. doi: 10.1111/ejss.12064
[34] MURPHY K R, HAMBLY A, SINGH S, et al. Organic matter fluorescence in municipal water recycling schemes: Toward a unified PARAFAC model[J]. Environmental Science & Technology, 2011, 45(7): 2909-2916.
[35] SØNDERGAARD M, STEDMON C A, BORCH N H. Fate of terrigenous dissolved organic matter (DOM) in estuaries: Aggregation and bioavailability[J]. Ophelia, 2003, 57(3): 161-176. doi: 10.1080/00785236.2003.10409512
[36] GALLETTI Y, GONNELLI M, RETELLETTI BROGI S, et al. DOM dynamics in open waters of the Mediterranean Sea: New insights from optical properties[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 144: 95-114. doi: 10.1016/j.dsr.2019.01.007
[37] LIU C, DU Y H, YIN H B, et al. Exchanges of nitrogen and phosphorus across the sediment-water interface influenced by the external suspended particulate matter and the residual matter after dredging[J]. Environmental Pollution, 2019, 246: 207-216. doi: 10.1016/j.envpol.2018.11.092
[38] SHENG Y R, YAN C X, NIE M H, et al. The partitioning behavior of PAHs between settled dust and its extracted water phase: Coefficients and effects of the fluorescent organic matter[J]. Ecotoxicology and Environmental Safety, 2021, 223: 112573. doi: 10.1016/j.ecoenv.2021.112573
[39] DERRIEN M, SHIN K H, HUR J. Biodegradation-induced signatures in sediment pore water dissolved organic matter: Implications from artificial sediments composed of two contrasting sources[J]. Science of the Total Environment, 2019, 694: 133714. doi: 10.1016/j.scitotenv.2019.133714
[40] ZHU L X, ZHAO S Y, BITTAR T B, et al. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: Rates and microbial impacts[J]. Journal of Hazardous Materials, 2020, 383: 121065. doi: 10.1016/j.jhazmat.2019.121065
[41] LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185: 907-917. doi: 10.1016/j.chemosphere.2017.07.064
[42] LEE Y K, MURPHY K R, HUR J. Fluorescence signatures of dissolved organic matter leached from microplastics: Polymers and additives[J]. Environmental Science & Technology, 2020, 54(19): 11905-11914.
[43] ZHOU L L, MA R J, YAN C H, et al. Plasma-mediated aging process of different microplastics: Release of dissolved organic matter and formation of disinfection by-products[J]. Separation and Purification Technology, 2022, 303: 122143. doi: 10.1016/j.seppur.2022.122143
[44] WU X W, LIU P, HUANG H, et al. Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations[J]. Science of the Total Environment, 2020, 717: 137033. doi: 10.1016/j.scitotenv.2020.137033
[45] 刘文慧, 王昱璇, 陈丹丹, 等. 老化作用对生物炭理化特性的影响[J]. 工程热物理学报, 2021, 42(6): 1575-1582. LIU W H, WANG Y X, CHEN D D, et al. Effect of aging on physicochemical properties of biochars[J]. Journal of Engineering Thermophysics, 2021, 42(6): 1575-1582(in Chinese).
[46] REN X N, HAN Y, ZHAO H R, et al. Elucidating the characteristic of leachates released from microplastics under different aging conditions: Perspectives of dissolved organic carbon fingerprints and nano-plastics[J]. Water Research, 2023, 233: 119786. doi: 10.1016/j.watres.2023.119786