[1] |
WU K, CHEN D, LU S, et al. Supramolecular self-assembly synthesis of noble-metal-free (C, Ce) co-doped g-C3N4 with porous structure for highly efficient photocatalytic degradation of organic pollutants[J]. Journal of Hazardous Materials, 2020, 382: 121027. doi: 10.1016/j.jhazmat.2019.121027
|
[2] |
WU S, HU H, LIN Y, et al. Visible light photocatalytic degradation of tetracycline over TiO2[J]. Chemical Engineering Journal, 2020, 382: 122842. doi: 10.1016/j.cej.2019.122842
|
[3] |
DAI B, HUANG H, WANG F, et al. Flowing water enabled piezoelectric potential of flexible composite film for enhanced photocatalytic performance[J]. Chemical Engineering Journal (Lausanne, Switzerland : 1996), 2018, 347: 263-272.
|
[4] |
HONG Y, LI C, ZHANG G, et al. Efficient and stable Nb2O5 modified g-C3N4 photocatalyst for removal of antibiotic pollutant[J]. Chemical Engineering Journal (Lausanne, Switzerland : 1996), 2016, 299: 74-84.
|
[5] |
张翩翩. 原子级活性位点催化剂的合成及其在光/电化学能源转化的应用[D]. 北京: 北京科技大学, 2023.
|
[6] |
ZHOU C, WANG Y, CHEN J, et al. Porous Ti/SnO2-Sb anode as reactive electrochemical membrane for removing trace antiretroviral drug stavudine from wastewater[J]. Environment International, 2019, 133: 105157. doi: 10.1016/j.envint.2019.105157
|
[7] |
潘诗婷. MXene介导的PMS氧化体系中间态活性物种产生机制与降解有机污染物研究[D]. 东莞: 东莞理工学院, 2023.
|
[8] |
HAU H, MISHRA T, OPHUS C, et al. Earth-abundant Li-ion cathode materials with nanoengineered microstructures[J]. Nature Nanotechnology, 2024, 19(12): 1831-1839. doi: 10.1038/s41565-024-01787-y
|
[9] |
WANG S, ZHAO L, DONG Y, et al. Pre-zeolite framework super-MIEC anodes for high-rate lithium-ion batteries[J]. Energy & Environmental Science, 2023, 16(1): 241-251.
|
[10] |
李岗归, 黄丹阳, 赵小龙, 等. 电化学沉积法制备ZnO厚膜工艺研究[J]. 人工晶体学报, 2024, 53(6): 1069-1077. doi: 10.3969/j.issn.1000-985X.2024.06.020
|
[11] |
刘金水. 电化学沉积技术在贵金属纳米结构制备中的应用探索[J]. 冶金与材料, 2024, 44(5): 94-96. doi: 10.3969/j.issn.1674-5183.2024.05.032
|
[12] |
KUMAR P, KANNIMUTHU K, ZERAATI A S, et al. High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction[J]. Journal of the American Chemical Society, 2023, 145(14): 8052-8063. doi: 10.1021/jacs.3c00537
|
[13] |
JIN T L, LIU X, GAO Q, et al. Pyrolysis-free, facile mechanochemical strategy toward cobalt single-atom/nitrogen-doped carbon for highly efficient water splitting[J]. Chemical Engineering Journal, 2022, 433: 134089. doi: 10.1016/j.cej.2021.134089
|
[14] |
KANG Y, GU Z, MA B, et al. Unveiling the spatially confined oxidation processes in reactive electrochemical membranes[J]. Nature Communications, 2023, 14(1): 6590. doi: 10.1038/s41467-023-42224-3
|
[15] |
BUI J C, LEES E W, MARIN D H, et al. Multi-scale physics of bipolar membranes in electrochemical processes[J]. Nature Chemical Engineering, 2024, 1(1): 45-60. doi: 10.1038/s44286-023-00009-x
|
[16] |
王策. 高压静电纺丝技术的现状及展望[C]//中国化学会. 中国化学会第27届学术年会第04分会场摘要集. 吉林大学麦克德尔米德实验室, 2010: 1. 04-I-027.
|
[17] |
ZHUANG H, HOU Q, HAN F, et al. Heteropolyacid catalyzed O-alkylation of oximes with alcoholsvia a carbocation in dimethyl carbonate and mechanism insight[J]. Green Chemistry, 2023, 25(1): 310-317. doi: 10.1039/D2GC03214G
|
[18] |
ZHANG Y, MAO J, ZHANG B, et al. Synergistic effects of Co–Fe boosts the transformation of CO2 into C6+ dicarboxylic acids up to gram-scale under mild conditions[J]. ACS Catalysis, 2024, 14(3): 1459-1467. doi: 10.1021/acscatal.3c05395
|
[19] |
LI Z, CHEN J, XIE Y, et al. Zonal activation of molecular carbon dioxide and hydrogen over dual sites Ni-Co-MgO catalyst for CO2 methanation: Synergistic catalysis of Ni and Co species[J]. Journal of Energy Chemistry, 2024, 91: 213-225. doi: 10.1016/j.jechem.2023.12.027
|
[20] |
XIAO X, LI Z, XIONG Y, et al. IrMo nanocluster-doped porous carbon electrocatalysts derived from cucurbit[6]uril boost efficient alkaline hydrogen evolution[J]. Journal of the American Chemical Society, 2023, 145(30): 16548-16556. doi: 10.1021/jacs.3c03489
|
[21] |
CHEN S, MA Y, ZHANG L, et al. The contact interface electronic coupling of cobalt and zirconia enables stable and highly efficient 4e(-) oxygen reduction reaction catalysis[J]. Small, 2024, 20(12): e2307278. doi: 10.1002/smll.202307278
|
[22] |
ZHOU J, HAN S, YANG R, et al. Linear adsorption enables NO selective electroreduction to hydroxylamine on single Co sites[J]. Angewandte Chemie International Edition in English, 2023, 62(27): e202305184. doi: 10.1002/anie.202305184
|
[23] |
WANG W, CHEN S, PEI C, et al. Tandem propane dehydrogenation and surface oxidation catalysts for selective propylene synthesis[J]. Science, 2023, 381(6660): 886-890. doi: 10.1126/science.adi3416
|
[24] |
HU J, SHANG W, XIN C, et al. Uncovering dynamic edge-sites in atomic Co−N−C electrocatalyst for selective hydrogen peroxide production[J]. Angewandte Chemie International Edition, 2023, 62(27): e202304754. doi: 10.1002/anie.202304754
|
[25] |
王禹, 章林溪. 拉伸分子动力学方法研究高分子单链的吸附现象[J]. 高分子学报, 2008(3): 216-220. doi: 10.3321/j.issn:1000-3304.2008.03.003
|
[26] |
GU Y, WANG S, SHI H, et al. Atomic Pt embedded in BNC nanotubes for enhanced electrochemical ozone production via an oxygen intermediate-rich local environment[J]. ACS catalysis, 2021, 11(9): 5438-5451. doi: 10.1021/acscatal.1c00413
|
[27] |
ZHANG W, LU G, CUI C, et al. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles[J]. Advanced Materials, 2014, 26(24): 4056-4060. doi: 10.1002/adma.201400620
|
[28] |
CHENG X, JIANG X, YIN S, et al. Instantaneous free radical scavenging by CeO2 nanoparticles adjacent to the Fe−N4 active sites for durable fuel cells[J]. Angewandte Chemie International Edition, 2023, 62(34): e202306166. doi: 10.1002/anie.202306166
|
[29] |
DE SOUSA L G, FRANCO D V, DA SILVA L M. Electrochemical ozone production using electrolyte-free water for environmental applications[J]. Journal of environmental chemical engineering, 2016, 4(1): 418-427. doi: 10.1016/j.jece.2015.11.042
|
[30] |
SONG Y, JI K, DUAN H, et al. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides[J]. Exploration, 2021, 1(3): 20210050. doi: 10.1002/EXP.20210050
|
[31] |
ZENG J, XIE W, GUO Y, et al. Magnetic field facilitated electrocatalytic degradation of tetracycline in wastewater by magnetic porous carbonized phthalonitrile resin[J]. Applied Catalysis B: Environmental, 2024, 340: 123225. doi: 10.1016/j.apcatb.2023.123225
|
[32] |
SHI C, YU S, LI C. Fabrication of aligned carbon nanofiber doped with SnO2-Sb for efficient electrochemical removal of tetracycline[J]. Chemical Engineering Journal, 2022, 441: 136052. doi: 10.1016/j.cej.2022.136052
|
[33] |
WANG M, LI S, KANG J, et al. Enhanced tetracycline degradation by NC codoped Fe2O3 with rich oxygen vacancies in peroxymonosulfate assisting photoelectrochemical oxidation system: Performance, mechanism and degradation pathway[J]. Chemical Engineering Journal, 2023, 451: 138611. doi: 10.1016/j.cej.2022.138611
|
[34] |
SUN J, WU H, FU C, et al. Novel fenton-like system based on bifunctional MgO/g-C3N4 S-scheme heterojunction photoanode for efficient tetracycline degradation[J]. Applied Catalysis B: Environment and Energy, 2024, 351: 123976. doi: 10.1016/j.apcatb.2024.123976
|
[35] |
ZHOU J, PAN F, WANG T, et al. Controlled synthesis of water–soluble Pt nanoclusters and their co– catalysis with RuO2–IrO2 for electrochemical degradation of tetracycline[J]. Separation and Purification Technology, 2022, 295: 121323. doi: 10.1016/j.seppur.2022.121323
|
[36] |
GONG S, ZHANG W, LIANG Z, et al. Construction of a BaTiO3/tubular g-C3N4 dual piezoelectric photocatalyst with enhanced carrier separation for efficient degradation of tetracycline[J]. Chemical Engineering Journal, 2023, 461: 141947. doi: 10.1016/j.cej.2023.141947
|
[37] |
LIU Y, GAO C, LIU L, et al. Improved degradation of tetracycline, norfloxacin and methyl orange wastewater treatment with dual catalytic electrode assisted self-sustained Fe2+ electro-Fenton system: Regulatory factors, mechanisms and pathways[J]. Separation and Purification Technology, 2022, 284: 120232. doi: 10.1016/j.seppur.2021.120232
|
[38] |
WANG J, ZHI D, ZHOU H, et al. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode[J]. Water Research, 2018, 137: 324-334. doi: 10.1016/j.watres.2018.03.030
|
[39] |
YUAN X, YANG J, YAO Y, et al. Preparation, characterization and photodegradation mechanism of 0D/2D Cu2O/BiOCl S-scheme heterojunction for efficient photodegradation of tetracycline[J]. Separation and Purification Technology, 2022, 291: 120965. doi: 10.1016/j.seppur.2022.120965
|
[40] |
TIE W, BHATTACHARYYA S S, MA T, et al. Improving photoexcited carrier separation through Z-scheme W18O49/BiOBr heterostructure coupling carbon quantum dots for efficient photoelectric response and tetracycline photodegradation[J]. Carbon, 2025, 231: 119707. doi: 10.1016/j.carbon.2024.119707
|
[41] |
CHEN L, YANG Z, QIAN J, et al. Interaction between organic compounds and catalyst steers the oxidation pathway and mechanism in the Iron oxide-based heterogeneous fenton system[J]. Environmental Science & Technology, 2022, 56(19): 14059-14068.
|
[42] |
YANG X, LIANG J, SHI Q, et al. Regulating the third metal to design and engineer multilayered niFeM (M: Co, Mn, and Cu) nanofoam anode catalysts for anion-exchange membrane water electrolyzers[J]. Advanced Energy Materials, 2024, 14(26): 2400029. doi: 10.1002/aenm.202400029
|
[43] |
GONG Y, WU Y, XU Y, et al. All-solid-state Z-scheme CdTe/TiO2 heterostructure photocatalysts with enhanced visible-light photocatalytic degradation of antibiotic waste water[J]. Chemical Engineering Journal, 2018, 350: 257-267. doi: 10.1016/j.cej.2018.05.186
|