[1] |
郝吉明, 马广大, 大气污染控制工程[M], 北京: 高等教育出版, 2002.
|
[2] |
杨玲, 李茂, 李建军. SCR催化剂的研究进展[J]. 四川化工, 2012, 15: 26-29. doi: 10.3969/j.issn.1672-4887.2012.02.011
|
[3] |
王玉云, 沈岳松, 纵宇浩, 等. Co、Ni掺入对Pd-Rh型催化剂三效净化C3H8、CO、NO的影响[J]. 环境工程, 2015, 13(5): 62-68.
|
[4] |
MENG D M, ZHAN W C, GUO Y, et al. A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NOx with ammonia: Effect of the calcination temperature[J]. Journal of Molecular Catalysis A: Chemical, 2016, 420: 272-281. doi: 10.1016/j.molcata.2016.04.028
|
[5] |
KIJLSTRA W S, BRANDS D S, POESLS E K, et al. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3[J]. Journal of Catalysis, 2007, 171(1): 208-218.
|
[6] |
陈建军, 李俊华, 柯锐, 等. 钒和钨负载量对 V2O5-WO3/TiO2 表面形态及催化性能的影响[J]. 环境科学, 2007, 28(9): 1949-1953. doi: 10.3321/j.issn:0250-3301.2007.09.009
|
[7] |
贾勇, 张松, 戴波, 等. 负载型磷酸氧钒低温脱硝催化剂的制备及其抗硫抗水性能[J]. 环境工程学报, 2019, 13(1): 125-133. doi: 10.12030/j.cjee.201805172
|
[8] |
尹荣强. 钒基催化剂抗中毒及一体化除尘脱硝催化滤管开发研究[D]. 北京: 清华大学, 2023.
|
[9] |
朱廷钰, 刘青, 李玉然, 等. 钢铁烧结烟气多污染物的排放特征及控制技术[J]. 科技导报, 2014, 32(33): 51-56.
|
[10] |
谢珊珊, 袁章福, 罗坚, 等. 冶金烟气净化过滤脱硫脱硝一体化集成技术[J]. 有色金属(冶炼部分), 2018, 10: 81-86.
|
[11] |
DVORAK R, CHLAPEK P, JECHA D, et al. New approach to common removal of dioxins and NOx as a contribution to environmental protection[J]. Journal of Cleaner Production, 2010, 18(9): 881-888. doi: 10.1016/j.jclepro.2010.01.024
|
[12] |
喜静波, 陈涛, 窦磊. Ce-TiO2催化剂在含SO2气氛下的NH3-SCR中毒机理及其Co3O4改性性能[J]. 环境工程学报, 2023, 17(4): 1283-1293. doi: 10.12030/j.cjee.202210097
|
[13] |
CHEN L, LI J. GE. M. The poisoning effect of alkali metals doping over nano V2O5−WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chemical Engineering Journal, 2011, 170: 531-537. doi: 10.1016/j.cej.2010.11.020
|
[14] |
LI X, CHEN J, LI J, et al. An efficient novel regeneration method for Ca-poisoning V2O5-WO3/TiO2 catalyst[J]. Chemical Communications, 2016, 87: 45-48.
|
[15] |
YU Y, WANG J, CHEN J, et al. Promotive effect of SO2 on the activity of a deactivated commercial selective catalytic reduction catalyst: An in situ DRIFT study[J]. Industrial Engineering Chemistry Research, 2014, 53: 16229-16234. doi: 10.1021/ie502065b
|
[16] |
PUTLURU S S R, KRISTENSEN, S B, DUE-HANSEN, J, et al. Alternative alkali resistant deNOx catalysts[J]. Catalysis Today, 2012, 184: 192-196. doi: 10.1016/j.cattod.2011.10.012
|
[17] |
XIONG S C, CHEN J J, LIU H, et al. Like cures like: Detoxification effect between alkali metals and sulfur over the V2O5/TiO2 deNOx catalyst[J]. Environmental Science & Technology, 2022, 56: 3739-3747.
|
[18] |
YANG Z, YANG G, LEI L, Poisoning process of the V2O5−CeO2/TiO2 catalyst by the cumulative effect of CaO[J]. Energy Fuels, 2021, 35, 14876−14884.
|
[19] |
何余生, 李忠, 奚红霞, 等. 气固吸附等温线的研究进展[J]. 离子交换与吸附, 2004, 20(4): 376-384. doi: 10.3321/j.issn:1001-5493.2004.04.012
|
[20] |
周惠, 黄华存, 董文华. SiO2 掺杂对 V2O5-WO3/TiO2 脱硝催化性能的影响[J]. 环境工程学报, 2017, 11(8): 4677-4684. doi: 10.12030/j.cjee.201607199
|
[21] |
XU Y F, WU X D, LIN Q W. SO2 promoted V2O5-MoO3/TiO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Applied Catalysis A, General, 2019, 570: 42-50. doi: 10.1016/j.apcata.2018.10.040
|
[22] |
BESSELMANN S, LOFFLER E, MUHLER M. On the role of monomeric vanadyl species in toluene adsorption and oxidation on V2O5/TiO2 catalysts: a Raman and in situ DRIFTS study[J]. Journal of Molecular Catalysis A: Chemical, 2000, 162: 401-411. doi: 10.1016/S1381-1169(00)00307-1
|
[23] |
KOBAYASHI M, HAGI M. V2O5-WO3/TiO2-SiO2-SO42+ catalysts: Influence of active componentsand supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2[J]. Applied Catalysis B: Environmental, 2006, 63: 104-113. doi: 10.1016/j.apcatb.2005.09.015
|
[24] |
YAN T, LIU Q, WANG S H, et al. Promoter rather than inhibitor: Phosphorus incorporation accelerates the activity of V2O5-WO3/TiO2 catalyst for selective catalytic reduction of NOx by NH3[J]. ACS Catalysis, 2020, 10(4): 2747-2753. doi: 10.1021/acscatal.9b05549
|
[25] |
KWON D W, PARK K H, HONG S C. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum[J]. Chemical Engineering Journal, 2016, 284: 315-324. doi: 10.1016/j.cej.2015.08.152
|
[26] |
PANAAGIOTOU G D, PETSI T, BOURIKAS K. Interfacial Impregnation Chemistry in the Synthesis of Molybdenum Catalysts Supported on Titania[J]. Journal of Physical Chemistry C, 2010, 114: 11868-11879. doi: 10.1021/jp101333t
|
[27] |
CHEN J P, YANG R T. Selective catalytic reduction of NO with NH3 on SO42-/TiO2 superacid catalyst[J]. Journal of Catalysis, 1993, 139(1): 277-288. doi: 10.1006/jcat.1993.1023
|
[28] |
XIONG J, LI Y R, LIN Y T, et al. Formation of sulfur trioxide during the SCR of NO with NH3 over a V2O5/TiO2 catalyst[J]. RSC Advances, 2019, 9(67): 38952-38961. doi: 10.1039/C9RA08191G
|
[29] |
LI C, SHEN M, YU T, et al. The mechanism of ammonium bisulfate formation and decomposition over V/WTi catalysts for NH3-selective catalytic reduction at various temperatures[J]. Physical Chemistry Chemical Physics, 2017, 19(23): 15194-15206. doi: 10.1039/C7CP02324C
|
[30] |
SHA G M S E, PHILIP C A. Solid acids from persulphated and perchlorated physical mixtures of zirconium and titanium hydroxides[J]. Adsorption Science & Technology, 2002, 20(10): 977-993.
|
[31] |
GUO Y Y, LUO L, MU B L. et[J]. al, Ash- and Alkali-Poisoning Mechanisms for Commercial Vanadium−Titanic-Based Catalysts[J], Industrial Engineering Chemistry Research, 2019, 58: 22418-22426.
|
[32] |
WANG X M, DU X S, LIU S J, et al. Understanding the deposition and reaction mechanism of ammonium bisulfate on a vanadia SCR catalyst: A combined DFT and experimental study[J]. Applied catalysis. B, Environmental, 2020, 260: 118168. doi: 10.1016/j.apcatb.2019.118168
|
[33] |
LIN Y T, LI Y R, XU Z C, et al. Carbon consumption and adsorption-regeneration of H2S on activated carbon for coke oven flue gas purification[J]. Environmental Science and Pollution Research International, 2021, 28(43): 60557-60568. doi: 10.1007/s11356-021-14914-2
|
[34] |
GUO X, BARTHOLOMEW C, HECKER W, et al. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Applied catalysis B, Environmental, 2009, 92(1-2): 30-40. doi: 10.1016/j.apcatb.2009.07.025
|
[35] |
CASAPU M, KRCHER O, MEHRING M, et al. Characterization of Nb-containing MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. Journal of Physical Chemistry, 2010, 114(21): 9791.
|
[36] |
QU R Y, GAO X, CEN K F, et al. Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH3[J]. Applied Catalysis B: Environmental, 2013, 142-143(5): 290.
|
[37] |
LIU Z M, YI Y, LI J H, et al. A superior catalyst with dual redox cycles for the selective reduction of NOx by ammonia[J]. Chemical Communications, 2013, 49(70): 7726-7728. doi: 10.1039/c3cc43041c
|
[38] |
TROVARELLI A. Catalytic properties of ceria and CeO2-containing materials[J]. Catalysis Reviews, 1996, 38(4): 439-520. doi: 10.1080/01614949608006464
|
[39] |
UNDEREOOD G M, MILLER T M, GRESSIAN V H. Transmission FT-IR and Knudsen cell study of the heterogeneous reactivity of gaseous nitrogen dioxide on mineral oxide particles[J]. The Journal of Physical Chemistry A, 1999, 103(31): 6184-6190. doi: 10.1021/jp991586i
|