[1] |
ZHOU S, DONG M, DING X, et al. Application of RSM to optimize the recovery of ammonia nitrogen from high chromium effluent produced in vanadium industry using struvite precipitation[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106318. doi: 10.1016/j.jece.2021.106318
|
[2] |
ADAM M R, OTHMAN M H D, ABU SAMAH R, et al. Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development[J]. Separation and Purification Technology, 2019, 213: 114-132. doi: 10.1016/j.seppur.2018.12.030
|
[3] |
LIN Z, HUANG W, ZHOU J, et al. The variation on nitrogen removal mechanisms and the succession of ammonia oxidizing archaea and ammonia oxidizing bacteria with temperature in biofilm reactors treating saline wastewater[J]. Bioresource Technology, 2020, 314: 123760. doi: 10.1016/j.biortech.2020.123760
|
[4] |
ZHANG M, SONG G, GELARDI D L, et al. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water[J]. Water Research, 2020, 186: 116303. doi: 10.1016/j.watres.2020.116303
|
[5] |
张晓宇, 邵红, 李云娇, 等. 复合改性膨润土对氨氮废水的吸附及脱附[J]. 环境工程学报, 2017, 11(3): 1494-1500. doi: 10.12030/j.cjee.201512133
|
[6] |
AHMED M J, HAMEED B H. Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review[J]. Journal of Cleaner Production, 2020, 265: 121762. doi: 10.1016/j.jclepro.2020.121762
|
[7] |
丁浩, 宋学锋. 自支撑粉煤灰基多孔吸附材料的制备与NH4+-N吸附效果[J]. 材料科学与工程学报, 2022, 40(5): 841-900.
|
[8] |
田琳, 孔强, 任宗明, 等. 活性炭和沸石对氨氮的吸附特性及生物再生[J]. 环境工程学报, 2012, 6(10): 3424-3428.
|
[9] |
宋雪宁, 邢玉坤, 何秋杭, 等. 磁致自辅热沸石控温载体构建及其氨氮吸附再生调控机制[J]. 环境工程学报, 2022, 16(7): 2178-2187. doi: 10.12030/j.cjee.202202009
|
[10] |
陈梅, 王芳, 张德俐. 生物炭结构性质对氨氮的吸附特性影响[J]. 环境科学, 2019, 40(12): 5421-5429.
|
[11] |
CHEN W F, MENG J, HAN H R, et al. Past, present, and future of biochar[J]. Springer Link, 2019, 75-87.[J].2019: 75-87. [J]. 2019: 75-87.
|
[12] |
XU D, CAO J, LI Y, et al. Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity[J]. Waste Management, 2019, 87: 652-660. doi: 10.1016/j.wasman.2019.02.049
|
[13] |
XU H, WANG B, ZHAO R, et al. Adsorption behavior and performance of ammonium onto sorghum straw biochar from water[J]. Scientific Reports, 2022, 12(1): 5358. doi: 10.1038/s41598-022-08591-5
|
[14] |
YANG H I, LOU K, RAJAPAKSHA A U, et al. Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars[J]. Environmental Science and Pollution Research, 2018, 25(26): 25638-25647. doi: 10.1007/s11356-017-8551-2
|
[15] |
FAN R, CHEN C, LIN J, et al. Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions[J]. Bioresource Technology, 2019, 272: 465-472. doi: 10.1016/j.biortech.2018.10.064
|
[16] |
GUO H, MA L, SHEN F, et al. Effects of La-involvement on biomass pyrolysis behaviors and properties of produced biochar[J]. Journal of Rare Earths, 2017, 35(6): 593-601. doi: 10.1016/S1002-0721(17)60952-9
|
[17] |
TU P, ZHANG G, WEI G, et al. Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants[J]. Bioresources and Bioprocessing, 2022, 9(1): 131. doi: 10.1186/s40643-022-00618-z
|
[18] |
HSU D, LU C, PANG T, et al. Adsorption of ammonium nitrogen from aqueous solution on chemically activated biochar prepared from sorghum distillers grain[J]. Applied Sciences, 2019, 9(23): 5249. doi: 10.3390/app9235249
|
[19] |
GAO T, SHI W, ZHAO M, et al. Preparation of spiramycin fermentation residue derived biochar for effective adsorption of spiramycin from wastewater[J]. Chemosphere, 2022, 296: 133902. doi: 10.1016/j.chemosphere.2022.133902
|
[20] |
苏景振, 林冠超, 刘早红, 等. MnFe-LDHs 生物炭对水中抗生素的吸附特性及影响因素研究[J]. 应用化工, 2023, 52(7): 2072-2079. doi: 10.3969/j.issn.1671-3206.2023.07.026
|
[21] |
YANG Y, ZHANG Y, WANG G, et al. Adsorption and reduction of Cr(VI) by a novel nanoscale FeS/chitosan/biochar composite from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105407. doi: 10.1016/j.jece.2021.105407
|
[22] |
MUKHERJEE A, ZIMMERMAN A R, HARRIS W. Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma, 2011, 163(3-4): 247-255. doi: 10.1016/j.geoderma.2011.04.021
|
[23] |
LIU N, SUN Z T, WU Z C, et al. Adsorption characteristics of ammonium nitrogen by biochar from diverse origins in Water[J]. Advanced Materials Research, 2013, 664: 305-312. doi: 10.4028/www.scientific.net/AMR.664.305
|
[24] |
PARK M H, JEONG S, KIM J Y. Adsorption of NH3-N onto rice straw-derived biochar[J]. Journal of Environmental Chemical Engineering, 2019, 7(2): 103039. doi: 10.1016/j.jece.2019.103039
|
[25] |
NDIBIZE W, HOSSAIN M, HONGYAN N, et al. Ammonium-nitrogen removal from aqueous solution using municipal green waste wood biochars[J/OL]. Advances in Environmental Technology, 2022(Online First)[2024-02-20].
|
[26] |
SHI M, WANG Z, ZHENG Z. Effect of Na+ impregnated activated carbon on the adsorption of NH4+-N from aqueous solution[J]. Journal of Environmental Sciences, 2013, 25(8): 1501-1510. doi: 10.1016/S1001-0742(8)60227-7
|
[27] |
HUANG H, XIAO X, YAN B, et al. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent[J]. Journal of Hazardous Materials, 2010, 175(1): 247-252.
|
[28] |
ALSHAMERI A, HE H, ZHU J, et al. Adsorption of ammonium by different natural clay minerals: characterization, kinetics and adsorption isotherms[J]. Applied Clay Science, 2018, 159: 83-93. doi: 10.1016/j.clay.2017.11.007
|
[29] |
陈友媛, 李培强, 李闲驰, 等. 浒苔生物炭对雨水径流中氨氮的吸附特性及吸附机制[J]. 环境科学, 2021, 42(1): 274-282.
|
[30] |
YI Y, WANG X, MA J, et al. Fe(III) modified egeria najas driven-biochar for highly improved reduction and adsorption performance of Cr(VI)[J]. Powder Technology, 2021, 388: 485-495. doi: 10.1016/j.powtec.2021.04.066
|
[31] |
TYTŁAK A, OLESZCZUK P, DOBROWOLSKI R. Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions[J]. Environmental Science and Pollution Research, 2015, 22(8): 5985-5994. doi: 10.1007/s11356-014-3752-4
|
[32] |
MEI Y, XU J, ZHANG Y, et al. Effect of Fe–N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution[J]. Bioresource Technology, 2021, 325: 124732. doi: 10.1016/j.biortech.2021.124732
|
[33] |
WANG B, ZHANG H, HU X, et al. Efficient phosphate elimination from aqueous media by La/Fe bimetallic modified bentonite: Adsorption behavior and inner mechanism[J]. Chemosphere, 2023, 312: 137149. doi: 10.1016/j.chemosphere.2022.137149
|
[34] |
CHEN M, WANG F, ZHANG D, et al. Effects of acid modification on the structure and adsorption NH4+-N properties of biochar[J]. Renewable Energy, 2021, 169: 1343-1350. doi: 10.1016/j.renene.2021.01.098
|
[35] |
XUE S, ZHANG X, NGO H H, et al. Food waste based biochars for ammonia nitrogen removal from aqueous solutions[J]. Bioresource Technology, 2019, 292: 121927. doi: 10.1016/j.biortech.2019.121927
|
[36] |
ATUGODA T, GUNAWARDANE C, AHMAD M, et al. Mechanistic interaction of ciprofloxacin on zeolite modified seaweed (Sargassum crassifolium) derived biochar: kinetics, isotherm and thermodynamics[J]. Chemosphere, 2021, 281: 130676. doi: 10.1016/j.chemosphere.2021.130676
|
[37] |
KIZITO S, WU S, KIPKEMOI KIRUI W, et al. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry[J]. Science of the Total Environment, 2015, 505: 102-112. doi: 10.1016/j.scitotenv.2014.09.096
|