[1] ZHAN H, LIU X, HUANG J, et al. Iron electrocoagulation activated peracetic acid for efficient degradation of sulfamethoxazole[J]. Chemical Engineering Research and Design, 2023, 200: 244-255. doi: 10.1016/j.cherd.2023.10.042
[2] ZHANG J, LV S, YU Q, et al. Degradation of sulfamethoxazole in microbubble ozonation process: Performance, reaction mechanism and toxicity assessment[J]. Separation and Purification Technology, 2023, 311: 123262. doi: 10.1016/j.seppur.2023.123262
[3] WANG J, WANG S. Microbial degradation of sulfamethoxazole in the environment[J]. Applied Microbiology and Biotechnology, 2018, 102(8): 3573-3582. doi: 10.1007/s00253-018-8845-4
[4] GAO H, ZHAO F, LI R, et al. Occurrence and distribution of antibiotics and antibiotic resistance genes in water of Liaohe River Basin, China[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108297. doi: 10.1016/j.jece.2022.108297
[5] Occurrence of quinotone antibiotics and their impacts on aquatic environment in typical river-estuary system of Jiaozhou Bay, China[J]. Ecotoxicology and Environmental Safety, 2020, 190: 109993.
[6] BONVIN F, OMLIN J, RUTLER R, et al. Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation[J]. Environmental Science & Technology, 2013, 47(13): 6746-6755.
[7] JIANG B, LI A, CUI D, et al. Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium[J]. Applied Microbiology and Biotechnology, 2014, 98(10): 4671-4681. doi: 10.1007/s00253-013-5488-3
[8] AO X, LIU W. Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide[J]. Chemical Engineering Journal, 2017, 313: 629-637. doi: 10.1016/j.cej.2016.12.089
[9] DAI J, CAI T, LI X, et al. Revisit the selectivity of metal-free biochar activated periodate for the oxidation of emerging contaminants[J]. Chemical Engineering Journal, 2023, 476: 146795. doi: 10.1016/j.cej.2023.146795
[10] LI Y, WANG J, WEI Z, et al. Effective periodate activation by peculiar Cu2O nanocrystal for antibiotics degradation: The critical role of structure and underlying mechanism study[J]. Applied Catalysis B: Environmental, 2024, 341: 123351. doi: 10.1016/j.apcatb.2023.123351
[11] YANG L, YANG F, ZHANG H, et al. Insight into the electron transfer regime of periodate activation on MnO2: The critical role of surface Mn(IV)[J]. Journal of Hazardous Materials, 2023, 454: 131479. doi: 10.1016/j.jhazmat.2023.131479
[12] YANG T, AN L, ZENG G, et al. Enhanced hydroxyl radical generation for micropollutant degradation in the In2O3/Vis-LED process through the addition of periodate[J]. Water Research, 2023, 243: 120401. doi: 10.1016/j.watres.2023.120401
[13] ZONG Y, SHAO Y, ZENG Y, et al. Enhanced oxidation of organic contaminants by iron(Ⅱ)-activated periodate: The significance of high-valent iron–oxo species[J]. Environmental Science & Technology, 2021, 55(11): 7634-7642.
[14] WANG Q, ZENG H, LIANG Y, et al. Degradation of bisphenol AF in water by periodate activation with FeS (mackinawite) and the role of sulfur species in the generation of sulfate radicals[J]. Chemical Engineering Journal, 2021, 407: 126738. doi: 10.1016/j.cej.2020.126738
[15] ZOU R, YANG W, REZAEI B, et al. Sustainable bioelectric activation of periodate for highly efficient micropollutant abatement[J]. Water Research, 2024, 254: 121388. doi: 10.1016/j.watres.2024.121388
[16] GUO D, YAO Y, YOU S, et al. Ultrafast degradation of micropollutants in water via electro-periodate activation catalyzed by nanoconfined Fe2O3[J]. Applied Catalysis B: Environmental, 2022, 309: 121289. doi: 10.1016/j.apcatb.2022.121289
[17] CAO M H, WANG B B, YU H S, et al. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation[J]. Journal of Hazardous Materials, 2010, 179(1): 1143-1146.
[18] CHIA L H, TANG X, WEAVERS L K. Kinetics and mechanism of photoactivated periodate reaction with 4-chlorophenol in acidic solution[J]. Environmental Science & Technology, 2004, 38(24): 6875-6880.
[19] LEE C, YOON J. Application of photoactivated periodate to the decolorization of reactive dye: reaction parameters and mechanism[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 165(1/2/3): 35-41.
[20] WEAVERS L K, HUA I, HOFFMANN M R. Degradation of triethanolamine and chemical oxygen demand reduction in wastewater by photoactivated periodate[J]. Water Environment Research, 1997, 69(6): 1112-1119. doi: 10.2175/106143097X125849
[21] LIU F, LI Z, DONG Q, et al. Catalyst-free periodate activation by solar irradiation for bacterial disinfection: Performance and mechanisms[J]. Environmental Science & Technology, 2022, 56(7): 4413-4424.
[22] PUYANG C, HAN J, GUO H. Degradation of emerging contaminants in water by a novel non-thermal plasma/periodate advanced oxidation process: Performance and mechanisms[J]. Chemical Engineering Journal, 2024, 483: 149194. doi: 10.1016/j.cej.2024.149194
[23] DU J, TANG S, FAHEEM, et al. Insights into periodate oxidation of bisphenol A mediated by manganese[J]. Chemical Engineering Journal, 2019, 369: 1034-1039. doi: 10.1016/j.cej.2019.03.158
[24] LEE H, YOO H Y, CHOI J, et al. Oxidizing capacity of periodate activated with iron-based bimetallic nanoparticles[J]. Environmental Science & Technology, 2014, 48(14): 8086-8093.
[25] LI D, PAN C, ZONG Y, et al. Ru(Ⅲ)-periodate for high performance and selective degradation of aqueous organic pollutants: Important role of Ru(V) and Ru(IV)[J]. Environmental Science & Technology, 2023, 57(32): 12094-12104.
[26] NIU L, LIN J, CHEN W, et al. Ferrate(VI)/periodate system: Synergistic and rapid oxidation of micropollutants via periodate/iodate-modulated Fe(IV)/Fe(V) intermediates[J]. Environmental Science & Technology, 2023, 57(17): 7051-7062.
[27] SUN Y J, FANG Z Y, HUANG X T, et al. Efficient photo-switchable activation of periodate by nitrogen-vacancy-rich carbon nitride for organic contaminant removal: Theoretical predictions and experimental validations[J]. Applied Catalysis B: Environmental, 2023, 337: 122994. doi: 10.1016/j.apcatb.2023.122994
[28] PENG J, ZHOU P, ZHOU H, et al. Removal of phenols by highly active periodate on carbon nanotubes: A mechanistic investigation[J]. Environmental Science & Technology, 2023, 57(29): 10804-10815.
[29] LI R, WANG J, WU H, et al. Periodate activation for degradation of organic contaminants: Processes, performance and mechanism[J]. Separation and Purification Technology, 2022, 292: 120928. doi: 10.1016/j.seppur.2022.120928
[30] SATHIYAN K, WANG J, WILLIAMS L M, et al. Revisiting the electron transfer mechanisms in Ru(Ⅲ)-mediated advanced oxidation processes with peroxyacids and ferrate(VI)[J]. Environmental Science & Technology, 2024, 58(26): 11822-11832.
[31] ZONG Y, SHAO Y, JI W, et al. Trace Mn(Ⅱ)-catalyzed periodate oxidation of organic contaminants not relying on any transient reactive species: The substrate-dependent dual roles of in-situ formed colloidal MnO2[J]. Chemical Engineering Journal, 2023, 451: 139106. doi: 10.1016/j.cej.2022.139106
[32] SPEIGHT J G, LANGE N A. Lange’s handbook of chemistry[M]. 16t. ed. , 70th anniversary ed. New York: McGraw-Hill, 2005.
[33] KIM J, ZHANG T, LIU W, et al. Advanced oxidation process with peracetic acid and Fe(Ⅱ) for contaminant degradation[J]. Environmental Science & Technology, 2019, 53(22): 13312-13322.
[34] ZHAO J, ZHANG H, SHI Y, et al. Efficient activation of ferrate by Ru(Ⅲ): Insights into the major reactive species and the multiple roles of Ru(Ⅲ)[J]. Journal of Hazardous Materials, 2023, 458: 131927. doi: 10.1016/j.jhazmat.2023.131927
[35] XIONG Y, TANG X, LIU Y, et al. Activation of periodate by chalcopyrite for efficient degradation of tetracycline hydrochloride[J]. Separation and Purification Technology, 2023: 125813.
[36] KIM Y, LEE H, OH H, et al. Revisiting the oxidizing capacity of the periodate–H2O2 mixture: identification of the primary oxidants and their formation mechanisms[J]. Environmental Science & Technology, 2022, 56(9): 5763-5774.
[37] CHEN T, SUN Y, DONG H, et al. Understanding the importance of periodate species in the pH-dependent degradation of organic contaminants in the H2O2/periodate process[J]. Environmental Science & Technology, 2022, 56(14): 10372-10380.
[38] LI R, MANOLI K, KIM J, et al. Peracetic acid–ruthenium(Ⅲ) oxidation process for the degradation of micropollutants in water[J]. Environmental Science & Technology, 2021, 55(13): 9150-9160.
[39] LUO K, SHI Y, HUANG R, et al. Activation of periodate by N-doped iron-based porous carbon for degradation of sulfisoxazole: Significance of catalyst-mediated electron transfer mechanism[J]. Journal of Hazardous Materials, 2023, 457: 131790. doi: 10.1016/j.jhazmat.2023.131790
[40] QIAN Y, HUANG J, LIU X, et al. Rapid oxidation of histamine H2-receptor antagonists by peroxymonosulfate during water treatment: Kinetics, products, and toxicity evaluation[J]. Water Research, 2020, 185: 116278. doi: 10.1016/j.watres.2020.116278
[41] Application of sludge biochar combined with peroxydisulfate to degrade fluoroquinolones: Efficiency, mechanisms and implication for ISCO[J]. Journal of Hazardous Materials, 2022, 426: 128081.
[42] ZONG Y, ZHANG H, ZHANG X, et al. Highly selective oxidation of organic contaminants in the RuⅢ-activated peroxymonosulfate process: The dominance of Ru(V)=O species[J]. Chemosphere, 2021, 285: 131544. doi: 10.1016/j.chemosphere.2021.131544
[43] CHEN Y, YUAN X, JIANG L, et al. Insights into periodate oxidation of antibiotics mediated by visible-light-induced polymeric carbon nitride: Performance and mechanism[J]. Chemical Engineering Journal, 2023, 457: 141147. doi: 10.1016/j.cej.2022.141147
[44] ZHOU L, SONG W, CHEN Z, et al. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst[J]. Environmental Science & Technology, 2013, 47(8): 3833-3839.
[45] SUN H, HE F, CHOI W. Production of reactive oxygen species by the reaction of periodate and hydroxylamine for rapid removal of organic pollutants and waterborne bacteria[J]. Environmental Science & Technology, 2020, 54(10): 6427-6437.
[46] BENDJAMA H, MEROUANI S, HAMDAOUI O, et al. Efficient degradation method of emerging organic pollutants in marine environment using UV/periodate process: Case of chlorazol black[J]. Marine Pollution Bulletin, 2018, 126: 557-564. doi: 10.1016/j.marpolbul.2017.09.059
[47] YANG B, MA Q, HAO J, et al. Periodate-based advanced oxidation processes: A review focusing on the overlooked role of high-valent iron and manganese species[J]. Chemosphere, 2023, 337: 139442. doi: 10.1016/j.chemosphere.2023.139442
[48] ZHANG K, YE C, LOU Y, et al. Promoting selective water decontamination via boosting activation of periodate by nanostructured Ru-supported Co3O4 catalysts[J]. Journal of Hazardous Materials, 2023, 442: 130058. doi: 10.1016/j.jhazmat.2022.130058
[49] BOKARE A D, CHOI W. Singlet-oxygen generation in alkaline periodate solution[J]. Environmental Science & Technology, 2015, 49(24): 14392-14400.