[1] CHANG W H, CHEN P H, HERIANTO S, et al. Aggregating exposures and toxicity equivalence approach into an integrated probabilistic dietary risk assessment for perchlorate, nitrate, and thiocyanate: Results from the national food monitoring study and national food consumption database[J]. Environmental Research, 2022, 211: 13.
[2] TRUMPOLT W C, CRAIN M, CULLISION D G, et al. Perchlorate: Sources, uses, and occurrences in the environment[J]. Remediation Journal, 2005, 16(1): 65-89. doi: 10.1002/rem.20071
[3] COUNCIL R N, STUDIES L A E O D, TOXICOLOGY A S E O B, et al. Health implications of perchlorate ingestion[M]. The National Academies Press, 2005: 276.
[4] V M M, LEONARDO T, G T N. Perchlorate and diet: Human exposures, risks, and mitigation strategies[J]. Current Environmental Health Reports, 2016, 3(2): 107-17. doi: 10.1007/s40572-016-0090-3
[5] WANG H R, JIANG Y S, SONG J Y, et al. The risk of perchlorate and iodine on the incidence of thyroid tumors and nodular goiter: A case-control study in southeastern China[J]. Environmental Health, 2022, 21(1): 4. doi: 10.1186/s12940-021-00818-8
[6] 吴春笃, 李顺, 许小红, 等. 高氯酸盐的环境毒理学效应及其机制的研究进展[J]. 环境与健康杂志, 2013, 30(1): 85-89.
[7] MARTINE B, BARBARA D, PHILIPPE G, et al. Response to the letter by middlebeek and veuger[J]. The Journal of Clinical Endocrinology And Metabolism, 2015, 100(6): L54-55. doi: 10.1210/jc.2015-2221
[8] 中国国家市场监督管理总局, 中国国家标准化管理委员会. 生活饮用水卫生标准: GB5749-2022[S]. 北京: 中国标准出版社, 2022.
[9] 于佳, 唐玄乐, 宋建平, 等. 高氯酸盐的急性毒性和遗传毒性研究[J]. 毒理学杂志, 2007(4): 267-269. doi: 10.3969/j.issn.1002-3127.2007.04.008
[10] KRISHNAN G R, PRABHAHARAN K, GEORGE B K. Watermelon rind derived carbon monolith as potential regenerable adsorbent for perchlorate[J]. Bioresource Technology Reports, 2023, 21: 101361. doi: 10.1016/j.biteb.2023.101361
[11] BAIDAS S, DEYAIN A K, MENG X, et al. Competitive removal of perchlorate Ions by quaternary amine modified reed in the presence of nitrate and phosphate[J]. Adsorption Science & Technology, 2023, 2023: 3087629.
[12] MENG Z L, FAN J X, CUI X Y, et al. Removal of perchlorate from aqueous solution using quaternary ammonium modified magnetic Mg/Al-layered double hydroxide[J]. Colloids And Surfaces A: Physicochemical And Engineering Aspects, 2022, 647: 129111. doi: 10.1016/j.colsurfa.2022.129111
[13] KRISHNAN G R, PRABHAHARAN K, GEORGE B K. N-doped activated carbon with hierarchical pores for the efficient removal of perchlorate from water[J]. Microporous And Mesoporous Materials, 2021, 315: 110892. doi: 10.1016/j.micromeso.2021.110892
[14] 滕俊, 张云英, 王艳, 等. 人群暴露高氯酸盐污染及其在饮用水中去除技术: 综述[J]. 环境化学, 2024(4): 1-13.
[15] YOON J, AMY G, CHUNG J, et al. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes[J]. Chemosphere, 2009, 77(2): 228-235. doi: 10.1016/j.chemosphere.2009.07.028
[16] 贺鑫, 王少华, 施立宪, 等. 纳滤饮用水厂的膜工艺处理效能与系统运行[J]. 同济大学学报(自然科学版), 2023, 51(10): 1509-1517. doi: 10.11908/j.issn.0253-374x.23260
[17] MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226-254. doi: 10.1016/j.desal.2014.10.043
[18] OATLEY D L, LLENAS L, PÉREZ R, et al. Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation[J]. Advances in Colloid And Interface Science, 2012, 173: 1-11. doi: 10.1016/j.cis.2012.02.001
[19] CAI H Y, AKHIL G, QILIN D, et al. Removal of strontium by nanofiltration: Role of complexation and speciation of strontium with organic matter[J]. Water Research, 2024, 253: 121241. doi: 10.1016/j.watres.2024.121241
[20] BOUSSOUGA Y A, MOHANKUMAR M B, GOPALAKRISHNAN A, et al. Removal of arsenic(III) via nanofiltration: contribution of organic matter interactions[J]. Water Research, 2021, 201: 117315. doi: 10.1016/j.watres.2021.117315
[21] 王子阳. 天然有机质对纳米银颗粒在混凝、吸附处理工艺中去除的影响[D]. 济南: 山东大学, 2019.
[22] MIAO R, WANG L, ZHU M, et al. Effect of hydration forces on protein fouling of ultrafiltration membranes: The role of protein charge, hydrated ion species, and membrane hydrophilicity[J]. Environmental Science & Technology, 2017, 51(1): 167-174.
[23] MEYBECK M, HELMER R. The quality of rivers: From pristine stage to global pollution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 75(4): 283-309. doi: 10.1016/0031-0182(89)90191-0
[24] FREGER V, ARNOT T C, HOWELL J A. Separation of concentrated organic/inorganic salt mixtures by nano filtration[J]. Journal of Membrane Science, 2000, 178(1-2): 185-193. doi: 10.1016/S0376-7388(00)00516-0
[25] CAI Y H, GOPALAKRISHNAN A, DESHMUKH K P, et al. Renewable energy powered membrane technology: Implications of adhesive interaction between membrane and organic matter on spontaneous osmotic backwash cleaning[J]. Water Research, 2022, 221: 118752. doi: 10.1016/j.watres.2022.118752
[26] OH J I, LEE S H, YAMAMOTO K. Relationship between molar volume and rejection of arsenic species in groundwater by low-pressure nano fltration process[J]. Journal of Membrane Science, 2004, 234(1-2): 167-175. doi: 10.1016/j.memsci.2004.01.023
[27] BRIGANTE M, ZANINI G, AVENA M. Effect of pH, anions and cations on the dissolution kinetics of humic acid particles[J]. Colloids And Surfaces A: Physicochemical and Engineering Aspects, 2009, 347(1): 180-186.
[28] NGUYEN T V, PENDERGAST M M, PHONG M T, et al. Relating fouling behavior and cake layer formation of alginic acid to the physiochemical properties of thin film composite and nanocomposite seawater RO membranes[J]. Desalination, 2014, 338: 1-9. doi: 10.1016/j.desal.2014.01.013