[1] |
CHEN G F, YUAN Y f, JIANG H F, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst[J]. Nature Energy, 2020, 5(8): 605-613. doi: 10.1038/s41560-020-0654-1
|
[2] |
WANG Y M, LIN Z Y, WANG Y, et al. Sulfur and iron cycles promoted nitrogen and phosphorus removal in electrochemically assisted vertical flow constructed wetland treating wastewater treatment plant effluent with high S/N ratio[J]. Water Research, 2019, 151: 20-30. doi: 10.1016/j.watres.2018.12.005
|
[3] |
CUI Y Y, BISWAL B B K, Van Loosdrecht Mark CM, et al. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor[J]. Water Research, 2019, 166: 115038. doi: 10.1016/j.watres.2019.115038
|
[4] |
OBEROI A, HUANG H Q, KHANAL S, et al. Electron distribution in sulfur-driven autotrophic denitrification under different electron donor and acceptor feeding schemes[J]. Chemical Engineering Journal, 2020, 4: 126486.
|
[5] |
HUANG Y W, ZHANG H H, Liu X, et al. Iron-activated carbon systems to enhance aboriginal aerobic denitrifying bacterial consortium for improved treatment of micro-polluted reservoir water: Performances, mechanisms, and implications[J]. Environmental Science & Technology, 2022, 56(6): 3407-3418.
|
[6] |
JIANG L, JI F Y, LIAO Y, et al. Denitrification performance and mechanism of denitrification biofilm reactor based on carbon-nitrate counter-diffusional[J]. Bioresource Technology, 2022, 348: 126804. doi: 10.1016/j.biortech.2022.126804
|
[7] |
杨素萍, 赵春贵, 曲音波, 等. 铁和镍对光合细菌生长和产氢的影响[J]. 微生物学报, 2003, 43(2): 257-263. doi: 10.3321/j.issn:0001-6209.2003.02.018
|
[8] |
MA H, GAO X L, CHEN Y H, et al. Fe(Ⅱ) enhances simultaneous phosphorus removal and denitrification in heterotrophic denitrification by chemical precipitation and stimulating denitrifiers activity[J]. Environmental Pollution, 2021, 287: 117668. doi: 10.1016/j.envpol.2021.117668
|
[9] |
ZHOU Y P, CHEN Y C, YANG JIAYI, et al. Insight into the enhancing mechanism of exogenous electron mediators on biological denitrification in microbial electrolytic cell[J]. Science of the Total Environment, 2023, 896: 165096. doi: 10.1016/j.scitotenv.2023.165096
|
[10] |
FENG Z T, MA X, SUN Y J, et al. Promotion of nitrogen removal in a denitrification process elevated by zero-valent iron under low carbon-to-nitrogen ratio[J]. Bioresource Technology, 2023, 386: 129566. doi: 10.1016/j.biortech.2023.129566
|
[11] |
LIU C L, GUO Z R, ZHANG H R, et al. Single-cell Raman spectra reveals the cytochrome c-mediated electron transfer in nanoscale zero-valent iron coupled denitrification process[J]. Chemical Engineering Journal, 2022, 454: 140241.
|
[12] |
Di Capua F, Milone I, Lakaniemi A M, et al. High-rate autotrophic denitrification in a fluidized-bed reactor at psychrophilic temperatures[J]. Chemical Engineering Journal, 2017, 313: 591-598. doi: 10.1016/j.cej.2016.12.106
|
[13] |
刘艳芳, 刘晓帅, 尹思婕, 等. 包埋硫铁生物填料的制备及自养反硝化性能[J]. 中国环境科学, 2022, 42(11): 5136-5143. doi: 10.3969/j.issn.1000-6923.2022.11.020
|
[14] |
温妍. Tween 80约束的多环芳烃功能菌降解特性研究[D]. 苏州: 苏州科技大学, 2022.
|
[15] |
HE Q L, SONG Q, ZHANG S L, et al. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources: reactor performance, extracellular polymeric substances and microbial successions[J]. Chemical Engineering Journal, 2018, 331: 841-849. doi: 10.1016/j.cej.2017.09.060
|
[16] |
SHEN R, SHENG G P, YU H Q. Determination of main components in the extracellular polymeric substances extracted from activated sludge using a spectral probing method[J]. Colloids and Surfaces B: Biointerfaces, 2012, 94: 151-156. doi: 10.1016/j.colsurfb.2012.01.045
|
[17] |
CHEN S, ZHOU B, CHEN H, et al. Iron mediated autotrophic denitrification for low C/N ratio wastewater: A review[J]. Environmental Research, 2022, 216(P4): 114687.
|
[18] |
GUAN X H, SUN Y K, QIN H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research, 2015, 75: 224-248. doi: 10.1016/j.watres.2015.02.034
|
[19] |
CHEN Y, YANG J, XIAO L, et al. Role of Nano-Fe3O4 for enhancing nitrate removal in microbial electrolytic cells: Characterizations and microbial patterns of cathodic biofilm[J]. Chemosphere, 2023, 339: 139643. doi: 10.1016/j.chemosphere.2023.139643
|
[20] |
CHEN Y M, LI C W, CHEN S S. Fluidized zero valent iron bed reactor for nitrate removal[J]. Chemosphere, 2005, 59: 753-759. doi: 10.1016/j.chemosphere.2004.11.020
|
[21] |
HE C S, DING R R, CHEN J Q, et al. Interactions between nanoscale zero valent iron and extracellular polymeric substances of anaerobic sludge[J]. Water Research, 2020, 178: 115817. doi: 10.1016/j.watres.2020.115817
|
[22] |
WANG X B, CHEN T T, GAO C Y, et al. Effect of extracellular polymeric substances removal and re-addition on the denitrification performance of activated sludge: carbon source metabolism, electron transfer and enzyme activity[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 108069. doi: 10.1016/j.jece.2022.108069
|
[23] |
TAKEMATSU K, WILLIAMSON HEATHER R, NIKOLOVSKI P, et al. Two tryptophans are better than one in accelerating electron flow through a protein[J]. ACS Central Science, 2019, 5: 192-200. doi: 10.1021/acscentsci.8b00882
|
[24] |
HAN S C, CUI Y W, YAN H J, et al. Enhancing simultaneous nitrate and phosphate removal in sulfur-iron (Ⅱ) autotrophic denitrification biofilters by endogenous magnetic fields: Performance and mechanism[J]. Journal of Water Process Engineering, 2023, 53: 103767. doi: 10.1016/j.jwpe.2023.103767
|
[25] |
刘畅, 崔康平, 孙士杰. 硫型免烧自养反硝化填料制备及其脱氮性能研究[J]. 工业用水与废水, 2023, 54(04): 60-65. doi: 10.3969/j.issn.1009-2455.2023.04.012
|
[26] |
MA W J, ZhANG H M, TIAN Y. Rapid start-up sulfur-driven autotrophic denitrification granular process: Extracellular electron transfer pathways and microbial community evolution[J]. Bioresource Technology, 2024, 395: 130331. doi: 10.1016/j.biortech.2024.130331
|
[27] |
CHEN Z, PANG C, WEN Q. Coupled pyrite and sulfur autotrophic denitrification for simultaneous removal of nitrogen and phosphorus from secondary effluent: Feasibility, performance and mechanisms[J]. Water Research, 2023, 243: 120422. doi: 10.1016/j.watres.2023.120422
|
[28] |
刘晓帅. 硫-铁自养反硝化深度脱氮工艺研究[D]. 石家庄: 河北科技大学, 2022.
|
[29] |
LIU L H, KOENIG A. Use of limestone for pH control in autotrophic denitrification: Batch experiments[J]. Process Biochemistry, 2002, 37: 885-893. doi: 10.1016/S0032-9592(01)00302-8
|
[30] |
史航, 隆添翼, 柳聪, 等. 基于异养-硫自养反硝化耦合技术的陶粒-硫磺混合生物填料对城市污水处理厂尾水的深度脱氮[J]. 环境工程学报, 2022, 16(4): 1363-1372. doi: 10.12030/j.cjee.202111034
|
[31] |
SHI Y P, LIU T, YU H T, et al. Enhancing anoxic denitrification of low C/N ratio wastewater with novel ZVI composite carriers[J]. Journal of Environmental Sciences, 2021, 112: 180-191.
|
[32] |
MIAO H H, ZENG W, LI J M, et al. Nutrient removal performance and the nitrogen-sulfur conversion pathways in sulfur-iron based biofilter under acidic/alkaline conditions[J]. Chemical Engineering Journal, 2024, 499: 156157. doi: 10.1016/j.cej.2024.156157
|
[33] |
赵丹. Fe2+/Fe0强化硫自养反应器脱氮除磷试验研究[D]. 徐州: 中国矿业大学, 2023.
|
[34] |
MIAO H, ZENG W, LI J, et al. Simultaneous nitrate and phosphate removal based on thiosulfate-driven autotrophic denitrification biofilter filled with volcanic rock and sponge iron[J]. Bioresource Technology, 2022, 366: 128207. doi: 10.1016/j.biortech.2022.128207
|
[35] |
WANG C, XU Y, HOU J, et al. Zero valent iron supported biological denitrification for farmland drainage treatments with low organic carbon: Performance and potential mechanisms[J]. Science of the Total Environment, 2019, 689: 1044-1053. doi: 10.1016/j.scitotenv.2019.06.488
|
[36] |
ZHANG T, SHAO M F, YE L. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. The ISME Journal, 2011, 6: 1137-1147.
|
[37] |
CAUSEY BEVERLEY D. Parametric estimation of the number of classes in a population[J]. Journal of Applied Statistics, 2002, 29(6): 925-934. doi: 10.1080/02664760220136221
|
[38] |
李政辉, 刘宝河, 余浩然, 等. 硫源对反硝化脱氮性能及微生物群落结构的影响[J]. 环境科学与技术, 2023, 46(9): 1-10.
|
[39] |
黄涵, 王继华. 污水处理厂中微生物群落特性与基因功能探究[J]. 环境科学与技术, 2023, 46(S1): 1-7.
|
[40] |
HAN F, ZHANG M R, SHANG H G, et al. Microbial community succession, species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic-limited nitrate wastewater[J]. Bioresource Technology, 2020, 315: 123826. doi: 10.1016/j.biortech.2020.123826
|
[41] |
YANG L, QIN Y J, LIU X Y, et al. The performance and microbial communities of Anammox and sulfide-dependent autotrophic denitrification coupling system based on the gel immobilization[J]. Bioresource Technology, 2022, 356: 127287. doi: 10.1016/j.biortech.2022.127287
|
[42] |
WANG J J, HUANG B C, LI J, et al. Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal[J]. Chinese Chemical Letters, 2020, 31(10): 2567-2574. doi: 10.1016/j.cclet.2020.07.036
|
[43] |
刘宝峰, 郭宇平. 硫自养反硝化技术用于市政污水深度处理[J]. 中国给水排水, 2022, 38(22): 91-95.
|
[44] |
ZHU T T, CHENG H Y, YANG L H, et al. Coupled sulfur and iron(Ⅱ) carbonate-driven autotrophic denitrification for significantly enhanced nitrate removal[J]. Environmental Science & Technology, 2019, 53: 1545-1554.
|
[45] |
李明礼, 高彦宁, 黄丹, 等. 强化型硫铁矿自养反硝化工艺深度处理城市二沉尾水研究[J]. 大连理工大学学报, 2023, 63(5): 454-462. doi: 10.7511/dllgxb202305003
|
[46] |
刘蕊, 施海仁, 常丽如, 等. 硫基自养反硝化处理市政污水的性能研究[J]. 环境化学, 2024, 44(9): 1-14.
|
[47] |
SIEVERT STEFAN M, SCOTT KATHLEEN M, KLOTZ MARTIN G, et al. Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans[J]. Applied and Environmental Microbiology, 2007, 74(4): 1145-1156.
|
[48] |
LIU X Z, ZHAO C S, XU T T, et al. Pyrite and sulfur-coupled autotrophic denitrification system for efficient nitrate and phosphate removal[J]. Bioresource Technology, 2023, 384: 129363. doi: 10.1016/j.biortech.2023.129363
|
[49] |
SHI C, XU Y, LIU M, et al. Enhanced bisphenol S anaerobic degradation using an NZVI-HA-modified anode in bioelectrochemical systems[J]. Journal of Hazardous Materials, 2021, 403(23): 124053.
|